Yearly variations of global plasma densities in the topside ionosphere at middle and low latitudes

Libo Liu, Biqiang Zhao, Weixing Wan, S. Venkartraman, Man-Lian Zhang, and X. Yue

Received 18 January 2007; revised 24 February 2007; accepted 10 April 2007; published 13 July 2007.

In this paper, the 10-year (1996–2005) measurements of total ion density (N_i) from the Defense Meteorological Satellite Program (DMSP) spacecraft at 0930 and 2130 LT have been analyzed to investigate the yearly variations of global plasma densities in the topside ionosphere at magnetic latitudes from 60^oS to 60^oN. Results indicate that there are strong yearly variations in the DMSP N_i at 840 km. The annual components of longitude-averaged N_i dominate at most latitudes with maxima around the June solstices in the Northern Hemisphere and the December solstice in the Southern Hemisphere. In contrast, seasonal anomaly (maxima N_i around the December solstice) exists in the northern equatorial zone. Moreover, the differences in N_i at the two solstices are not symmetrical about the magnetic equator, being generally higher in the Southern Hemisphere than in the Northern Hemisphere. Conjugate-averaged N_i is substantially greater at the December solstice than at the June solstice. This annual asymmetry is modulated by solar activity effect and has latitudinal and longitudinal structures. The longitude effects of the annual asymmetry depend on local time, being stronger in the evening sector than in the morning sector. The solstice differences and annual asymmetry are more marked with increasing solar activity. The annual asymmetry appears not only in the rising phase of the solar cycle but also in the declining phase. Thus the solar condition differences between the two solstices do not account for the N_i asymmetry. The concentration of neutral oxygen [O], provided from the NRLMSIS model, shows a similar pattern of annual and hemispheric asymmetries. Moreover, effects of the HWM model neutral winds are also constituent with the change patterns of N_i. Therefore, considering the principal processes in the topside ionosphere, the changes of [O] and the rates of thermospheric winds should contribute to the annual asymmetry in N_i at 840-km altitude.

1. Introduction

It is well known that the temporal and spatial variations of the Earth’s ionosphere at and above the peak of the F_2 layer behave differently from the solar zenith angle dependence as predicted by the Chapman ionization theory [e.g., Bailey et al., 2000; Balan et al., 1998, 2000; Gulyaeva and Rawer, 2003; Mendillo et al., 2005; Richards, 2001; Rishbeth, 1998; Rishbeth et al., 2000; Rüster and King, 1973; Su et al., 1998; Torr and Torr, 1973; Torr et al., 1980; Wright, 1963; Yonezawa, 1971; Zhang et al., 2005; Zou et al., 2000]. Historically, when the observed behaviors of the F_2 layer were significantly deviated from the predicted solar zenith angle dependence, they were called “anomalies.” Typical examples of these anomalies in the F_2 layer are the so-called “seasonal anomaly” or “winter anomaly” (that the daytime values of midlatitude N_mF_2 in the Northern Hemisphere are much greater in winter than in summer), “annual anomaly” or “nonseasonal anomaly” (take the Northern and Southern Hemispheres in the world as a whole N_mF_2 in December is greater than in June during both the daytime and at night), “semiannuual anomaly” (greater N_mF_2 at equinox than at solstice), and “equatorial anomaly” (The equatorial anomaly is within approximately ±20^o of the magnetic equator) [e.g., Ivanov-Kholodny and Mikhailov, 1986; Moffett, 1979; Torr and Torr, 1973; Torr et al., 1980; Whalen, 2003] and so on. The annual anomaly or nonseasonal anomaly is sometimes called the “annual asymmetry.” Such anomalies are now attributed to variations of atmospheric compositions and/or to dynamic processes including plasma transportations because of atmospheric neutral circulations and other factors [e.g., Bailey et al., 2000; Mendillo et al., 2005; Rishbeth, 1998;...
that were quite unknown in Chapman’s time. [5] Many assumptions have been proposed to explain the variations of the anomalies, including the “geometrical explanations,” the “thermal explanations,” the “chemical explanations,” and so on [see Rishbeth, 1998; Zou et al., 2000, and references therein]. Among these anomalies, the seasonal anomaly or winter anomaly may be associated with the seasonal changes of atmospheric compositions produced by a global circulation [e.g., Duncan, 1969; Millward et al., 1996; Rishbeth and Setty, 1961], while causes for the annual asymmetry is still not completely understood and remains unexplained [Mendillo et al., 2005]. Investigations of the annual asymmetry have used data on NmF2 from ionosondes [e.g., Yonezawa, 1971; Rishbeth and Müller-Wodarg, 2006] and on the total electron content (TEC) from two stations [Titheridge and Buonsanto, 1983], global GPS networks [Mendillo et al., 2005; Zhao et al., submitted manuscript, 2007], and from the TOPEX mission (Wan et al., submitted manuscript, 2007). In this paper, we use a database of total ion densities (N) in the topside ionosphere from Defense Meteorological Satellite Program (DMSP) measurements at 840-km altitude [e.g., Greenspan et al., 1994; Rich et al., 2003; Sultan and Rich, 2001; West et al., 1997], which allows us to examine the global asymmetries of the plasma densities in the topside ionosphere at middle and low latitudes.

[4] Previous studies have shown that the ionospheric variations have significant altitude dependencies [e.g., Balan et al., 2000; Faktullin, 1973; Gondikalekar and King, 1973; Rich et al., 2003; Su et al., 1999]; that is, the behaviors in the topside ionosphere are rather different from those in the F region. For example, Su et al. [1999] found strong altitude dependencies in the solar activity variations of electron densities, which were observed with the Japanese incoherent scatter radar. Recently, Rich et al. [2003] revealed that the solar rotation (27-day) effect is rather pronounced in the topside plasma density than in TEC. Furthermore, winter anomaly does not appear in the topside ionosphere [Bailey et al., 2000], whereas it is found obviously in the midlatitude F region [Torr and Torr, 1973; Yonezawa, 1971]. Plasma densities have been observed to be higher in December than in June [Gutie et al., 1995]. With the plasma density observations from the Hinotori satellite at 600-km altitude, Su et al. [1998] and Bailey et al. [2000] found strong annual anomaly in the low-latitude topside ionosphere. Hitherto, limited analyses on climatological patterns have been applied to the topside ionosphere [e.g., Bailey et al., 2000; Denton et al., 1999; Rich et al., 2003; Su et al., 1999, 2005; West et al., 1997; Zhao et al., 2005], compared to those at the peak of the F2 layer.

[5] Topside plasmas were continuously measured by the Defense Meteorological Satellite Program (DMSP) spacecraft since 1987 [e.g., Greenspan et al., 1994; Rich et al., 2003; Sultan and Rich, 2001; West et al., 1997]. This large data source is ideally suited for studying the climatology of plasma densities, drifts, and temperatures in the topside ionosphere, although it does not provide the necessary local time coverage. In this analysis, data from the DMSP measurements during 10 years from 1996 to 2005 are collected to investigate the yearly variations of the topside ionosphere. We will mainly focus on the annual asymmetry in the morning and evening (0930 and 2130 LT) sectors at middle and low latitudes.

2. Data Source

[6] The series of the DMSP spacecraft are designated with the letter F and the flight number, for example, F12, F14, and F15. DMSP spacecraft are in Sun-synchronous polar orbits around the 840-km altitude. The period of an orbit is about 101 min, and consecutive orbits are separated in longitude by 25.5°. The nearly constant local time of the DMSP orbital planes at middle and low latitudes makes their ionospheric measurements unique for allowing other drivers of the plasma characteristics to be more noticeable. The overlapped operational time of the spacecraft ensures the data’s integrity.

[7] The spacecraft carries a “Special Sensor for Ions, Electrons, and Scintillation” (SSIES) package to monitor the behavior of thermal plasma in the topside ionosphere since 1987. This package has been described in many works [e.g., Greenspan et al., 1994; Rich et al., 2003; Sultan and Rich, 2001; West et al., 1997]. The sum of plasma densities over all ion species (referred to as the total ion density or N) is measured with the onboard scintillation meter at a resolution of 24 Hz. In this paper, only data in the morning and evening (0930 and 2130 LT) sectors from the spacecraft F12, F14, and F15 were chosen for analysis. The N data are archived and provided at the University of Texas, Dallas (UTD) Web site as 4-s averages. We used the geomagnetic coordinates provided by UTD, which are the corrected geomagnetic coordinates of the subspacecraft location. At each local time sector, values of N are averaged in latitude bins (within a 3°-latitude window) between ±60° geomagnetic latitude in each day during the years from 1996 to 2005. Each latitude bin includes data points over all longitudes (longitude-averaged case) or over longitude sectors (specified longitude zone case). Irregularity structures, for example, equatorial plasma density bubbles, may appear in the postsunset topside ionosphere [e.g., Huang et al., 2001]. We adopt the method of Su et al. [2006] to remove irregularities in the data set before taking the average.

[8] The 10.7-cm solar radio flux, F10.7, is often used as a standard proxy for solar activity. In this paper, we adopt the adjusted values of F10.7 which are provided at the SPIDR (Space Physics Interactive Data Resource) Web site in accord with the work of Liu et al. [2006a, 2006b], since different F10.7 values (the observed, adjusted, and absolute values provided by the US National Geophysical Data Center) do not greatly affect our conclusions. Figure 1 shows the variations of F10.7 and the time coverage of DMSP N we used. Moreover, we ignore the geomagnetic activity effects on the plasma densities in this analysis. Zhao et al. [2005] examined storm effects for more than a hundred cases during 1996–2004 and found that N is enhanced during the main phase of the storm and depressed during the recovery phase of the storm. There is no obvious statistical relationship between N and geomagnetic disturbances. As a matter of fact, since the topside ionosphere is
largely controlled by the solar flux, the geomagnetic effect is less evident.

3. Results

3.1. Yearly Variations of DMSP \(N_i\)

[9] As an example to portray the yearly variations, Figure 2 shows the daily longitude-averaged DMSP \(N_i\) at magnetic latitudes \(\pm 6^\circ\), \(\pm 16^\circ\), \(\pm 32^\circ\), and \(\pm 48^\circ\) at (1) 0930 and (2) 2130 LT during the years from 1996 to 2005. Red points correspond to the daily data in the Southern Hemisphere and blue points to those in the Northern Hemisphere. The vertical dashed lines show the beginnings of the years. It is obvious that DMSP \(N_i\) has distinct local time and seasonal variations and strong solar activity dependency. The hemispheric asymmetry becomes stronger with increasing solar activity.

[10] It can be seen from Figure 2 that the annual variations of longitude-averaged \(N_i\) predominate at middle and low latitudes with maxima around the June solstices in the Northern Hemisphere and around the December solstices in the Southern Hemisphere and minima 6 months out of phase (see the panels except the bottom ones). In contrast, in the equatorial zone (6°N–6°S), the values of \(N_i\) are substantially higher around the December solstices than the June solstices in both hemispheres; that is, seasonal anomaly still exists in the northern equatorial zone. The general feature is similar in both 0930 and 2130 LT sectors (see the bottom panels). Another significant feature is that there are strong solar activity modulations in the annual variation of \(N_i\). It is evident that, with increasing solar activity, the differences of longitude-averaged \(N_i\) at both the December and June solstices are seen to be substantially larger (this can also be found in Figure 4). The solar activity features in DMSP \(N_i\) have been presented in detail by Liu et al., 2007b, which found that DMSP \(N_i\) has an approximately linear dependence on daily \(F_{10.7}\) and a nonlinear dependence on EUV fluxes. The linear correlation coefficients between \(N_i\) and \(F_{10.7}\) at a given location and season vary from 0.6 to higher than 0.9. At the same time, the 27-day effect in \(N_i\) is rather pronounced, which has been reported in the work of Rich et al. [2003]. Our tests indicate that whether the 27-day variation effects be removed or not do not significantly affect the features presented in this paper.

[11] At a lower altitude (600 km), the yearly variation of the low-latitude electron density (\(N_e\)) has maxima around the equinoxes and minima around the solstices [Bailey et al., 2000]. This feature, the so-called semiannual anomaly, has also been observed in the topside profiles measured by the Japanese middle and upper atmosphere (MU) radar [Balan et al., 2000] and in the ionospheric F region and TEC. However, it is quite different at 840-km altitude that, in general, the semiannual anomaly appears only in the magnetic equatorial region at 2130 LT and is much weak or absent at higher latitudes in DMSP \(N_i\). Thus our result confirms the existence of altitude dependence of the yearly variations.

[12] The yearly variations of \(N_i\) can be considered as a combination of the annual and semiannual components and the yearly average as follows:

\[
N_i = A_{\text{mean}} + A_{\text{annual}} + A_{\text{semiannual}} + \varepsilon
\]

Where \(A_{\text{mean}}, A_{\text{annual}}, \) and \(A_{\text{semiannual}}\) are the corresponding yearly average and annual and semiannual components,
respectively. \(\varepsilon \) is the corresponding residual term. Because of the varying solar activity during the period under consideration and the strong solar activity effects in \(N_i \), we further expand the above three components in equation (1) as follows:

\[
\begin{align*}
A_{\text{mean}} &= A_{00} + A_{01} F_{10.7}, \\
A_{\text{annual}} &= (c_{10} + c_{11} F_{10.7}) \cos \frac{2\pi d}{365.25} \\
&\quad + (s_{10} + s_{11} F_{10.7}) \sin \frac{2\pi d}{365.25}, \\
A_{\text{semiannual}} &= (c_{20} + c_{21} F_{10.7}) \cos \frac{4\pi d}{365.25} \\
&\quad + (s_{20} + s_{21} F_{10.7}) \sin \frac{4\pi d}{365.25}.
\end{align*}
\]

(2)

Here \(F_{10.7} \) is the solar 10.7-cm flux index, \(d \) is the day number which is counted as 1 on 1 January and 365(366) on 31 December. The amplitudes and phases of the components at any given solar activity level can be reconstructed from coefficients \(c_{ij} \) and \(s_{ij} \), here \(i = 1, 2; j = 0, 1 \) in equation (2) through fitting the \(N_i \) data using equation (1) with a least squares method; that is, at a given solar activity level \(F_{10.7} \), the amplitude of the \(i \)th component is

\[
\sqrt{(c_{i0} + c_{i1} F_{10.7})^2 + (s_{i0} + s_{i1} F_{10.7})^2}
\]

and the phase of the \(i \)th component is \(\text{atan} \left(\frac{s_{i0} + s_{i1} F_{10.7}}{c_{i0} + c_{i1} F_{10.7}} \right) \). Then the phases are presented in units of day number when the maximum of \(N_i \) occurs. Figure 3 plots results normalized at two levels of solar activity corresponding to 10.7-cm flux values of \(F_{10.7} = 100 \) (low solar activity case) and \(F_{10.7} = 180 \) (high solar activity case). The vertical axis of Figure 3 shows the magnetic latitude and the horizontal axis denotes the values of the phases (top panels) or the amplitudes (bottom panels) of the components.

As shown in Figure 3, the latitudinal structure of the yearly average of \(N_i \) presents a dome-like distribution with a
maximum near the magnetic equator, which is similar to the mean term of \(N_i \) in the empirical orthogonal analysis made by Zhao et al. [2005]. This configuration is mainly affected by geomagnetic and solar control. At equatorial and low latitudes, the yearly averages of \(N_i \) at 2130 LT are much higher than those at higher latitudes and in the morning sector. This feature is suggested to be due to the effect of the prereversal enhancement of upward drift as discussed by Zhao et al. [2005].

At most latitudes, the annual component dominates with amplitude stronger than that of the semiannual component. Exception occurs in a narrow latitudinal range in the northern equatorial zone (see the bottom panels in Figure 3) at which the amplitude of the semiannual component is higher than that of the annual component at the higher level of solar activity \((F_{10.7} = 180) \) at 0930 LT and for all solar activity levels at 2130 LT. The amplitudes of the annual component at both 0930 and 2130 LT increase gradually with increasing solar activity. The annual amplitudes peak near the magnetic equator in the evening sector at two levels of solar activity. In the morning sector, there are two crests at 30°S and 30°N and a trough around 10°N for \(F_{10.7} = 180 \) and only a minimum around 10°N for \(F_{10.7} = 100 \). Poleward of 30°S, the annual component has a much weak latitudinal variation. It is obvious that the annual component maximizes near the December solstice in the Southern Hemisphere and near the June solstice at northern middle latitudes. The phase of the annual variations varies little with latitude in the Southern Hemisphere and middle latitude in the Northern Hemisphere except that the phase shift in the annual component occurs at latitude from near the magnetic equator to low latitude in the Northern Hemisphere. An interesting feature is that, at the higher solar activity level \((F_{10.7} = 180) \), the annual phase in the Northern Hemisphere shifts from the June solstice toward May in the morning sector (see the top-left panel of Figure 3).

3.2. \(N_i \) at Solstices

A more complete picture of \(N_i \) in the June solstices (averaged ±15 days centered on 21 June in each year) and the December solstices (averaged ±15 days on 21 December in each year) over the latitude range \((60°N–60°S) \) under consideration is illustrated in Figure 4. The solid curves in Figure 4 refer to the June solstice results, while the dashed ones give the December solstice results. The plasma densities at 840 km have their highest values over a narrow latitude range around the magnetic equator. At higher latitudes, plasma densities are found to decrease with increasing latitude in both hemispheres and \(N_i \) is higher in the summer hemisphere. The maximum of \(N_i \) in the Southern Hemisphere during the December solstice is larger...
than that in the Northern Hemisphere during the June solstice. For each year, except a narrow latitude zone equatorial from the magnetic equator to the northern side, the month-averaged \(N_i \) is seen to be greater in local summer (June solstice for the Northern Hemisphere and December solstice for the Southern Hemisphere) than in local winter. This feature is contrary to the behavior of \(N_m F_2 \) in the \(F \) region [Torr and Torr, 1973]. Furthermore, at most latitudes, the latitudinal variations in any given season become particularly enhanced with increasing solar activity [16].

[16] The dash-dot curves in Figure 4 show the absolute differences of \(N_i \) at both the December and June solstices. The differences of \(N_i \) at the two solstices are small under low solar activity years (1996, 2004, and 2005) while they become much greater and have a stronger latitude variation in high solar activity years (2000 and 2001). In the evening sector (2130 LT), the behavior also depends on the solar activity level. \(N_i \) is seen to be greater in the December solstices than in the June solstices at all latitudes in years from 1997 to 2002; while in 1996, 2003, 2004, and 2005, \(N_i \) at the two solstices are comparable to each other.

3.3. Annual Asymmetry Index

[18] To give a quantitative description of the annual asymmetry, we introduce the annual asymmetry index (AI) of Mendillo et al. [2005] at any given magnetic latitude \(q \) as given by

\[
AI = \frac{(N_i^N + N_i^S)_{December} - (N_i^N + N_i^S)_{June}}{(N_i^N + N_i^S)_{December} + (N_i^N + N_i^S)_{June}}
\]

where superscripts N and S denote \(N_i \) at north and south magnetic latitudes \(q \).

[19] To faithfully represent the annual asymmetry, we also choose the year of 2002 as done in the work of Mendillo et al. [2005]. The 31-day mean of \(F_{10.7} \) is 153.4 for the June solstice and 152.3 for the December solstice. Figure 5 shows the latitudinal variations of AI for the longitude-averaged \(N_i \) in the year 2002. Apart from the latitudinal variation, the first feature to note is that AI illustrates a globally mean positive annual asymmetry.
pattern. Second, AI has local time and latitude variations. The values of AI range from 0.12 to 0.22 at 0930 LT and from 0.007 to 0.285 at 2130 LT. The longitude-averaged AI in the morning sector has a minimum at low latitude (26°) and becomes larger at lower and higher latitudes while, in the evening sector, it has a peak at latitude 6° and decreases with increasing latitude up to 40°. At higher latitudes, the values of AI have an insignificant latitude variation.

3.4. Longitudinal Effect of the Annual Asymmetry of \(N_i\)

The topside ionosphere shows a strong longitude effect [e.g., Su et al., 1996; Sultan and Rich, 2001;...

![Figure 4](image_url)

Figure 4. Longitude-averaged DMSP total ion density \(N_i\) as a function of magnetic latitudes at (a) 0930 LT and (b) 2130 LT at December (red dash curves) and June (blue solid curves) solstices from 1996 to 2005. The dash-dot curves correspond to the absolute differences of \(N_i\) between the two solstices. Note that the horizontal scale at 2130 LT 2001 is different from the others. The horizontal bars cover lower quartile through median values to upper quartile.
To investigate the longitudinal effects of the annual variations, we separately average the data over four longitude sectors at (1) 30\degree E, (2) 120\degree E, (3) 210\degree E, and (4) 285\degree E with a bandwidth ±27\degree and calculate the corresponding AI. The choice of longitudes for each longitude sector is based on the configuration of the geomagnetic field [see Su et al., 1996]: At longitudes 30\degree and 120\degree E, the magnetic equator shifts to 10\degree north from the geographic equator and the magnetic declination is westward at 30\degree E and is small at 120\degree E. In contrast, the magnetic equator coincides with the geographic equator at 210\degree E while the former shifts to higher than 10\degree S geographic at 285\degree E.

Figure 6 shows the latitudinal variations of AI in these four longitude sectors at 0930 and 2130 LT. A notable feature seen in Figure 6 is the existence of the longitude effects of the annual asymmetry which depends on local time. The longitude effects of AI are much stronger in the evening sector than in the morning sector. In the morning sector, AI keeps positive in all longitude sectors but has slightly different latitude structures in these longitude sectors. On the other hand, at 2130 LT, AI at middle latitudes becomes negative in the 30\degree and 120\degree longitude sectors, which is quite deviated from the global averaged case (Figure 5).

4. Discussion

The preceding analysis reveals valuable climatological features of the topside total ion density at 840-km altitude. Among these features, the yearly variations show significant annual variations and annual asymmetry, which has strong solar activity modulations and latitudinal dependence. Obviously, the annual asymmetry exists not only in the rising phase of the solar cycle but also in the declining phase. Thus the differences in solar conditions in the two

Figure 5. The annual asymmetry index AI (see text) of longitude-averaged N_i as a function of magnetic latitude at 0930 and 2130 LT in 2002.

Figure 6. The annual asymmetry index AI (see text) of N_i in the four longitude zones of (a) 30\degree ±27\degree, (b) 120\degree ±27\degree, (c) 210\degree ±27\degree, and (d) 285\degree ±27\degree as a function of magnetic latitude at 0930 and 2130 LT in 2002.
solstices do not account for the observed differences in annual asymmetry in conjugate-averaged N_i. Moreover, as mentioned by Rishbeth and Müller-Wodarg [2006], the possible cause of the annual asymmetry in the solstice variation in Sun-Earth distance and the consequent 7% variation in the flux of ionizing radiation cannot account for the observed solstice difference in global N_mF_2. It is also true for DMSP N_i.

4.1. Neutral Compositions

There are complicated couplings between the plasma in the topside ionosphere and that at underlying altitudes and also with the neutral compositions. We find the annual asymmetry in the neutral compositions. First, we examine neutral compositions which output from the NRLMSISE-00 model [Picone et al., 2002]. The right panels of Figure 7 illustrate the globally averaged concentrations of atomic oxygen $[O]$ at 500 km in the December and June solstices at 0930 and 2130 LT in 2002, while the left panels of Figure 7 show the ratio of conjugate-averaged $[O]$ and $[N_2]$ in the December solstice to those in the June solstice. It is seen in Figure 7 that, according to the NRLMSISE-00 model, the conjugate-averaged values of $[O]$ at 0930 and 2130 LT are substantially higher at the December solstices than at the June solstice and the December/June concentration ratio is 1.2–1.3. This is consistent with the satellite orbit analysis at an altitude of 470 km by King-Hele and Walker [1969]. A similar feature was also reported in the work of Mendillo et al. [2005] and in monograph [e.g., Ivanov-Kholodny and Mikhailov, 1986]. Moreover, the differences in $[O]$ at the two solstices have little altitude variation at altitudes from 500 to 840 km. Thus we only show results at 500 km for typical example. Another feature that can be seen in Figure 7 is that the differences in $[O]$ at the two solstices are larger in the Southern Hemisphere than in the Northern Hemisphere. This pattern is also consistent with that of N_i (Figure 4). On the other hand, conjugate-averaged $[N_2]$ and $[O_2]$ also increase higher at the December solstice, compared to the June solstices. However, the amount of atomic oxygen exceeds that of N_2 and O_2 by more than 2 orders of magnitude, thus the topside ionosphere is no longer in chemical equilibrium. Although the $[O]/[N_2]$ ratio is always used as an indicator in discussing the F-layer problems, $[N_2]$ and $[O_2]$ fall off more rapidly with height than does $[O]$. This fact implies that the recombination processes related with N_2 and O_2 should be of minor importance with increasing altitude. As a result, what is important and suitable for understanding the topside annual asymmetry is the seasonal effects in $[O]$, not the $[O]/[N_2]$ ratio. Thus, if there is any counterpart in the neutral compositions of the atmosphere, the topside annual asymmetry should come from the annual variation of $[O]$ rather than from that of $[O_2]$ and $[N_2]$. Although there is a difference in their latitudinal patterns, the neutral composition counterpart in $[O]$ is

![Figure 7](image_url)

Figure 7. Right panels illustrate the concentrations of globally averaged neutral oxygen $[O]$ in the December and June solstices at 0930 and 2130 LT in 2002. Left panels plot the ratio of conjugate averaged $[O]$ (top) and molecular nitrogen $[N_2]$ (bottom) in the December solstice to those in the June solstice in 2002. The input altitude used for the NRLMSISE-00 model was 500 km.
consistent with that in the topside plasma density. However, it should be noted that the NRLMSIS model may fail to precisely reproduce the actual latitude pattern [Liu et al., 2005, 2007a].

Previous modeling studies have shown that the above increase in \([O]\) will increase the production rate of ions, which in turn increase the ion and electron densities. For instance, Su et al. [1998] reported their model simulation results for the 600-km ionosphere, which confirms the importance of the annual asymmetry of \([O]\) in that of plasma densities at 600 km. Their results can also be applied to the case at 840 km if we assume topside plasma under diffusive equilibrium [Rishbeth and Garriott, 1969]. Thus the annual asymmetry at 840 km is at least partially explained by changes in \([O]\) if the winds and other dynamic processes do not significantly distort the diffusive distribution of the topside plasma.

4.2. Neutral Winds

It is well known that the plasma distribution in the topside ionosphere is controlled both by dynamics and by chemistry. Actually, the topside ionosphere is not in photochemical equilibrium and transport becomes the principal process. The dynamic processes of the region involve neutral winds, \(E \times B\) drifts, and diffusions. Thus, besides neutral compositions, the seasonal variations of neutral winds should play an important role in the strong annual variations of \(N_i\). Thermospheric winds push plasma up and down geomagnetic field lines and transport plasma from one hemisphere to the other by modulating the field-aligned flows [e.g., Heeis et al., 1990; Venkatraman and Heeis, 2000], which influences the ion density latitude structure [Oyama and Watanabe, 2004; Sultan and Rich, 2001; Watanabe et al., 1995] and the observed hemispheric asymmetries [Greenspan et al., 1994]. Neutral winds in the magnetic meridian include contributions from both the geographic zonal and meridional winds, which depend on the magnetic declination angle. Therefore the field-aligned flows due to neutral winds may be a primary cause of the latitudinal and longitudinal dependences and the seasonal variations of the topside plasma densities [Su et al., 1998; Venkatraman and Heeis, 2000]. Evidences can be found in the longitudinal effects of the interhemispheric plasma flows in the topside ionosphere [e.g., Venkatraman and Heeis, 2000]. Furthermore, it is expected that the zonal wind has significant contributions at longitudes with a significant magnetic declination [Liu et al., 2004], giving the hemispheric asymmetries a longitudinal dependence [Heeis and Hanson, 1980; Su et al., 1996; Venkatraman and Heeis, 2000]. As a result, the hemispheric and annual asymmetries present longitude and latitude features if neutral winds play an important role in the topside ionosphere.

Let us now examine outputs from the HWM-93 neutral wind model [Hedin et al., 1996]. The input altitude used for the HWM-93 model was 500 km in considering the insignificant altitude variation due to huge viscous effects at high altitudes.

Figure 8 shows the field-aligned component of neutral winds from the HWM-93 model in the June and December solstices in 2002. Positive values for field-aligned component of winds in the southward direction. The model winds have been averaged in longitude, and the input altitude used for the wind model was 500 km.
Furthermore, as shown in Figure 8, there is a pronounced difference between the December solstice and the June solstice. For example, at 0930 LT, the December solstice winds are northward for both hemispheres, and the June solstice winds are southward in the Northern Hemisphere and southern low latitude, but they turn to northward in the South Hemisphere with magnetic latitudes higher than 28°S. We know that equatorward winds tend to push plasma to higher altitude, where the loss rate is smaller. As a result, higher density will also be resulted. From the difference of winds for both solstices, the net effect of the difference in winds will cause the plasma density to be higher in the Southern Hemisphere. It is interesting that the pattern of this difference is also constituent with a larger difference of \(N_i \) during the two solstices in the Southern Hemisphere (Figure 4).

5. Summary

This paper has analyzed the 10-year (1996–2005) measurements of total ion density (\(N_i \)) from the Defense Meteorological Satellite Program (DMSP) spacecraft at 0930 and 2130 LT to investigate the yearly variations of global topside plasma densities within ±60° magnetic latitude. In summary, the major findings are outlined as follows.

1. The total ion densities at 840-km altitude show strong yearly variations with local time, longitude and latitude structures, and solar activity modulation.

2. The annual components dominate in the yearly variations of longitude-averaged \(N_i \) at most latitudes with maxima around the June solstices in the Northern Hemisphere and around the December solstices in the Southern Hemisphere. Moreover, the differences in \(N_i \) at the two solstices are not symmetrical about the magnetic equator, being generally stronger in the Southern Hemisphere than in the Northern Hemisphere. Exception occurs in the northern equatorial zone, where seasonal anomaly still exists with \(N_i \), being maxima \(N_i \) around the December solstices. In contrast, significant semiannual anomaly is seen in the plasma densities at 600 km and in the ionospheric \(F \) region [e.g., Bailey et al., 2000; Balan et al., 2000] and TEC [W. Han et al., submitted manuscript, 2007].

3. Conjugate-averaged \(N_i \) at both hemispheres is substantially greater at the December solstices than at the June solstices at most latitudes. The solstice differences and annual asymmetry are more distinctly manifested with increasing solar activity.

3. The annual asymmetry has latitudinal and longitudinal structures and is modulated by solar activity effect. The values of annual asymmetry index (AI) range from 0.12 to 0.22 at 0930 LT and from 0.007 to 0.285 at 2130 LT. The longitude effects of the annual asymmetry depend on local time, being stronger in the evening sector than in the morning sector.

3. The annual asymmetry in \(N_i \) cannot be explained by the solar condition differences between the two solstices. The changes of neutral oxygen concentration [O] from the NRLMSIS model show a similar asymmetry and the hemispheric pattern as \(N_i \). Moreover, effects of the HWM model neutral winds are consistent with the change patterns of \(N_i \). Thus the effect of annual anomaly may be explained in terms of the different changes of [O] and neutral winds in upper atmosphere at the December and June solstices.

To understand the detailed physical processes involved, diagnostic runs with a coupled thermosphere-ionosphere modeling is highly desirable. Furthermore, this investigation supports the existence of altitude dependence of the yearly variations. To understand their features, more research should be conducted on observations from other altitudes.

Acknowledgments. The authors thank the referees for their valuable suggestions to the paper. The DMSP data are provided by the Center for Space Sciences at University of Texas at Dallas and the US Air Force. The \(F_{\text{m}} \) index is taken from the SPIDR Web site. This research was supported by the National Natural Science Foundation of China (40674090, 40636032), the KIP Pilot Project (kczx3-sw-144) of Chinese Academy of Sciences, and National Important Basic Research Project (2006CB806306).

Amitava Bhattacharjee thanks the reviewers for their assistance in evaluating this paper.

References

Heeles, R. A., W. B. Hanson, and G. J. Bailey (1990), Distributions of the \(H^+ \) at middle and equatorial latitudes during solar maximum, J. Geophys. Res., 95, 10,313–10,320.

