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Ancient sub-continental lithospheric mantle (SCLM) beneath the eastern part of the
Central Asian Orogenic Belt (CAOB): Implications for crust–mantle decoupling
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Potassic basaltic lavas erupted during the Cenzoic are widespread inWudalianchi, Erkeshan and Keluo (WEK)
areas, northeast China, and contain abundant mantle xenoliths. Mantle xenoliths in this study are selected
from the Keluo potassic lavas, and mainly comprise spinel lherzolites and harzburgites with minor dunites
and wehrlites. Modal metasomatism is evident in some Keluo xenoliths from the presence of phlogopite and
rutile. Mineral compositions indicate that the Keluo xenoliths represent mantle residues after variable
degrees of melting, i.e., 1–5% for lherzolites and 3–11% for harzburgites, with subsequent refertilization. Both
bulk-rock and clinopyroxene data show enrichment in light rare earth elements (LREE) and some other
incompatible elements (e.g. Ba, U). Clinopyroxenes from some of the Keluo xenoliths have radiogenic Sr
isotopes, but unradiogenic Nd–Hf isotopes relative to the Cenozoic mantle xenoliths from other localities of
the NE China. The Keluo mantle xenoliths have variable 187Os/188Os ratios ranging from 0.11458 to 0.13194.
Although most Keluo mantle xenoliths have been affected by Re addition, their Os isotope compositions have
not been significantly modified. The unradiogenic 187Os/188Os ratios of the refractory harzburgites give Re
depletion ages (TRD) of ~1.9–2.1 Ga. This suggests that the sub-continental lithospheric mantle (SCLM)
beneath the Keluo area was formed during the Paleoproterozoic, which is older than the age of the overlying
crust that was mainly formed since the Neoproterozoic. Therefore, the SCLM beneath the Kelou area is
temporally decoupled from the overlying crust. It is unlikely that the Cenozoic SCLM beneath the Keluo area
was newly accreted from the asthenosphere, in which ancient mantle domains were preserved. We propose
that the ancient mantle beneath the Keluo region is extraneous and has been emplaced from other locations.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Potassic igneous rocks erupted during the Cenozoic have been well
documented in the Wudalianchi, Erkeshan and Keluo (WEK) fields in
the Xing'an-Mongolia Orogenic Belt (XMOB), northeast China (Liu,
1987; Zhang et al., 1995; Zou et al., 2003). They are characterized by
high K2O contents (e.g., K2O/Na2ON1) and marked enrichment in
incompatible elements, especially the large ion lithophile elements
(LILEs, e.g., Rb, Ba, Th, U) and light rare earth elements (LREE). These
features, together with their Sr–Nd–Pb isotopes, have been explained
by low degree melting of phlogopite-bearing garnet peridotites, which
have been subjected to metasomatic processes as old as the
Proterozoic (Zhang et al., 1998; Zou et al., 2003). This inference is
also supported by the Sr–Nd isotopes of clinopyroxene from mantle
xenoliths entrained in the WEK potassic rocks (Zhang et al., 2000).
Therefore, both potassic rocks and mantle xenoliths indicate the
existence of Proterozoic sub-continental lithospheric mantle (SCLM)

beneath the WEK area during the Cenozoic. On the other hand,
previous Re–Os isotope studies on mantle xenoliths from the eastern
portion of NE China (e.g., Wangqing, Yitong, Shangliao and Jiaohe)
have suggested that the Cenozoic SCLM is juvenile and probably
represents fertile mantle accreted from the asthenosphere during the
Phanerozoic (Wu et al., 2003b, 2006; Zhou et al., 2007, 2010). This
implies that the SCLM beneath the WEK field is different from the
neighboring areas. Furthermore, various studies on both granites and
volcanic rocks have shown that the crust in the XMOB is juvenile and
was mainly accreted during the Phanerozoic (Ge et al., 2007; Guo et al.,
2009; Jahn et al., 2004; Sui et al., 2007; Wu et al., 2000, 2002, 2003a;
Zhang et al., 2006, 2007, 2010). Therefore, it seems that the crust is
decoupled from the SCLM in the WEK region, i.e., an old mantle
underlies the young crust.

However, the formationageof the SCLMbeneath theWEKregionhas
been not directly constrained and so to better constrain the age of the
SCLM and understand the crust–mantle decoupling, we have conducted
a Re–Os isotope study on mantle xenoliths entrained in the Kelou
potassic basalts. Major, trace elements and Sr–Nd–Hf isotopes of the
Keluomantle xenoliths are alsopresentedand thehistoryofmeltingand
metasomatism of the SCLM in the region will be discussed.
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2. Geological background and sample descriptions

The Xing'an-Mongolia Orogenic Belt (XMOB) is the eastern part of
Central Asian Orogenic Belt (CAOB), which is sandwiched between
the Siberian and North China cratons (Jahn et al., 2000, 2004; Sengör
et al., 1993). It comprises a series of micro-continents (Fig. 1a),
including the Erguna Block, the Xina'an Block, the Songnen Block and
the Jiamusi Massif (Ye et al., 1994). They are separated by the Tayuan-
Xiguitu, Hegenshan-Nenjiang and Jiayin-Mudanjiang faults, respec-
tively (Fig. 1a). The Erguna Massif is considered to be the eastern
extension of the Central Mongolian microcontinent. Granite outcrops
are common in the XMOB and have been linked to the closure of the
Paleo-Asian Ocean in the Paleozoic and Paleo-Pacific during the
Mesozoic. Nd isotopic data for the granitoids indicate a crustal
formation age of 1680–1060 Ma (Wu et al., 2003a), which is
comparable to that of the Jamusi Massif (Sui et al., 2007; Wu et al.,
2000). In contrast, granites in the Xing'an and Songnen Blocks have
much younger model ages, i.e., b1000 Ma (Jahn et al., 2000, 2004; Wu
et al., 2000, 2002, 2003a). Similar conclusions have also been arrived
using Hf isotopes from zircons in granites (Ge et al., 2007; Sui et al.,
2007; Zhang et al., 2010).

Cenozoic basaltic magmatism is widely distributed in NE China
(Fan and Hooper, 1989; Liu, 1992). Potassic rocks that erupted during
the Late Pliocene–Pleistocene (2.3~0.13 Ma) and Quaternary (1719–
1721 A.D.) are widespread in the WEK areas, i.e., Wudalianchi,
Erkeshan and Keluo (Fig. 1a). The Keluo potassic rocks were erupted
in the Middle Pleistocene and are composed of leucitite, olivine basalt,
olivine leucitite, leucitic basanite and vitrobasalt (Liu, 1987). The
olivine basalts contain abundant spinel-facies mantle xenoliths but no

garnet peridotites. Samples selected in this study were collected from
the Dayizishan Volcano near the Keluo town (Fig. 1b). They aremainly
composed of spinel lherzolites, with minor spinel harzburgites,
dunites and wehrlite (Fig. 2). Their modal contents of olivine are
variable ranging from 50% to 94% (Table 1).

Most Keluo mantle xenoliths are small, with a diameter of 3–8 cm
(Fig. 3a). They display porphyroclastic to equigranular microstruc-
tures with little deformation (Fig. 3b–e). Triple junctions are common
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Fig. 1. Sketchmap of the Northeast (NE) China, in which the distribution of the Cenozoic volcanic rocks is shown (a); the distribution of granites and volcanic rocks in the Keluo area (b).
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among the neoblasts (Fig. 3b–d). Olivine porphyroclasts generally
display kink-bands (Fig. 3d). The poikilitic spinel commonly shows a
holly-leaf shape (Fig. 3b, c). Occasionally, round spinel is also included
within olivine and orthopyroxene porphyroclasts. Round shaped
olivine in the wehrlite is always surrounded by clinopyroxene
(Fig. 3e). Euhedral tabular phlogopite grains have been found in two
spinel peridotites (08KL-01 and 08KL-11). Phlogopite veins occur in
sample 08KL-11 (Fig. 3f), in which rutile has also been observed but
with a modal content less than 0.1%.

3. Analytical methods

Whole rock major and trace elements were measured at the
Guangzhou Institute of Geochemistry, Chinese Academy of Sciences
(GIGCAS). Mineral compositions, clinopyroxene Sr–Nd–Hf isotopes,
highly siderophile elements (HSE) and Re–Os isotopes were finished
at the Institute of Geology and Geophysics, Chinese Academy of
Sciences (IGGCAS).

3.1. Whole rock major and trace elements

Whole rock major elements were determined by X-Ray fluores-
cence (XRF) method, as described in Li et al. (2006). Samples were
prepared as glass disks using Rigaku desktop fusion machine,
produced by mixing 0.5 g of rock powder (dried at 110 °C) with
4.0 g of lithium tetraborate for 15 min at 1100 °C in Pt–Au crucibles.
Major elements were determined on a Rigaku ZSX100e instrument
with an analytical uncertainty of 1%–5%.

Whole rock trace elements were measured by inductively coupled
plasma mass spectrometry (ICP-MS), using a Perkin-Elmer Sciex Elan
6000 instrument. The detailed procedure has been given in Li et al.
(2006). The precision for minor and trace elements is better than 5%.

3.2. Mineral major and trace elements

Mineral major elements were measured using a JEOL-JXA8100
electronmicroprobe with an accelerating voltage of 15 kV and current
of 12 nA in a wavelength-dispersive (WDS) mode. Trace elements of
clinopyroxene were analyzed using a laser ablation inductively-
coupled mass spectrometer (LA-ICP-MS). The detailed description of
themethod has been given in Liu et al. (2010a). The laser ablation ICP-
MS system consists of a Lambda Physik LPX 120I pulsed ArF excimer
laser coupled to an Agilent 7500 ICP-MS. A glass standard, NIST 610,
was used as an external calibration standard. Calcium (43Ca) was
selected as an internal standard. The CaO contents of NIST 610 used in
calculation is 11.45%, and the reference data is from Pearce et al.
(1997). The data were reduced using the GLITTER 4.0 developed by
GEMOC, Macquarie University (Griffin et al., 2008).

3.3. Clinopyroxene Sr–Nd–Hf isotopes

The separated clinopyroxene was ground to 200–400 meshes using
an agatemortar after beingwashed in ultra-pure (milli-Q)water. About
150 mg of clinopyroxene powder and mixed isotopic tracers (i.e.,
87Rb-84Sr, 149Sm-150Nd and 176Lu-180Hf) were added into a 7 ml round-
bottom Savillex™ Teflon crew-top capsule. The samples were dissolved
using a mixed acid of 2 ml HF and 0.2 ml HClO4 on a hotplate at 120 °C
for about 1 week. After the samples were completely dissolved, the
solutions were dried on hotplate at 150 °C to remove the HF and HClO4.
3 ml HCl was added to the residue, and then dried. Finally, the residue
was dissolved in 5 ml of 3 M HCl, and placed on a hotplate at ~100 °C
overnight prior to column separation. The sample solution was
centrifuged and then sequentially loaded onto pre-conditioned LN
(LN-C-50A, 2 ml) chromatographic columns, AG50W-X12 (2 ml) cation
exchange columns and another commercial LN (LN-C-50B, 2 ml) Spec
resin column for separating the Lu, Hf, Rb, Sr, Nd and Sm. A combined

procedure for separating Lu, Hf, Rb, Sr, Sm and Nd from a single sample
digestion was used (Chu et al., 2009; Yang et al., 2010).

Both Rb–Sr and Sm–Nd isotopes were determined using an
Isoprobe-T thermal ionization mass spectrometer (TIMS). Measured
87Sr/86Sr and 143Nd/144Nd ratios were mass fractionation corrected
using 86Sr/88Sr=0.1194 and 146Nd/144Nd=0.7219, respectively.
During the period of data collection, the measured values for the NBS-
987 Sr standard and the JNdi-Nd standard are 87Sr/86Sr=0.710250±11
(n=18) and 143Nd/144Nd=0.512120±12 (n=12), respectively. Both
Lu and Hf isotopes were measured using a Thermo-Electron Neptune
multi-collector ICP-MS (MC-ICPMS). Hafnium isotopic ratios were
normalized to 179Hf/177Hf=0.7325 and 176Lu/175Lu isotopic ratios
were normalized using the Yb isotopic ratios. Themeasured 176Hf/177Hf
ratios of the JMC475 are 0.282165±10 (n=10). In addition, the USGS
referencematerials BCR-1 andBHVO-2were also analyzed for Sr–Nd–Hf
isotopes. The obtained 87Sr/86Sr, 143Nd/144Nd and 176Hf/177Hf ratios for
BCR-1 are 0.704977±12, 0.512655±5 and 0.282866±6, respectively,
whereas those of BHVO-2 are 0.703474±11, 0.513000±15 and
0.283109±5, respectively.

3.4. Highly siderophile elements and Re–Os isotopes

Highly siderophile elements (HSE) and Re–Os isotopes were
measured by isotope dilution methods following the procedure
described by Chu et al. (2009). The KL-series samples have only
measured the Re–Os isotopes. About 2 g powder together with Re–Os
(187Re and 190Os) and reverse aqua regia (3 ml 12 NHCl and 6 ml 15 N
HNO3) were digested in a Carius Tube at 240 °C for 48–72 h. Both HSE
and Re–Os isotopes were determined for 08KL-series samples, for
which HSE (99Ru, 105Pd, 191Ir and 194Pt) isotope tracers were also
added together with Re–Os isotope tracers. Osmium was extracted
from the aqua regia solution by CCl4 and further purified by micro-
distillation using the method described by Birck et al. (1997). For KL-
series samples, Re was extracted from the solution by anion exchange
chromatography using 2 ml resin (AG-1×8, 100–200 meshes). For
08KL-series samples, Ru, Pd, Re, Ir and Pt were sequentially separated
from the solution by anion exchange method.

Osmium concentrations and isotopic ratios were measured by N-
TIMS on a GV Isoprobe-T instrument in a static mode using the
Faraday cups. The Ba(OH)2 solution was used as ion emitter. The
measured Os isotopic ratios were corrected for mass fractionation
using 192Os/188Os=3.0827. The in-run precisions for Os isotopic
measurements were better than 0.2% (2δ; δ=relative standard
deviation) for all the samples. The Jahnson–Matthey standard of
UMD was used as an external standard and its ratio is 0.11378±2
during the experiments in this study. The concentrations of Ir, Ru, Pt,
Pd and Re were measured on a Thermal-Electron Neptune MC-ICPMS
in a peak-jumping or static mode, according to their measured signal
intensity. In-run precisions for 185Re/187Re, 191Ir/193Ir, 99Ru/101Ru,
194Pt/196Pt and 105Pd/106Pd were typically 0.1–0.3% (2δ). The total
procedural Os blankwas 3–5 pgwith 187Os/188Os of about 0.15, which
was negligible for all samples in this study. Total procedural blanks
were about 3 pg for Re, 7 pg for Ir, 7 pg for Ru, 4 pg for Pt and 4 pg for
Pd. The blank corrections were negligible (b1%) for Ir, Ru, Pt and Pd,
but as great as 10–30% for Re for the low-Re samples. The standard
WPR-1 was analyzed to monitor the reliability of the method, and the
obtained results agree within analytical errors with the reference
values (GEOREM: http://georem.mpch-mainz.gwdg.de).

4. Results

4.1. Whole-rock compositions

Bulk-rock major and trace element compositions are listed in
Table 1. Most samples are fresh and have low loss on ignition (LOI)
values, which is consistent with petrographic observations. The
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lherzolites contain 1.57–3.99 wt.% Al2O3 and 1.29–6.24 wt.% CaO,
whereas the harzburgites and dunites have lower contents of both
Al2O3 and CaO, i.e., ~0.65–1.35 wt.% vs. ~0.37–0.95 wt.%, respectively.
The wehrlite (08KL-07) contains the lowest MgO (37.63 wt.%) and
highest CaO (6.97 wt.%). The bulk TiO2 contents are 0.05–0.41 wt.% in
lherzolites, 0.02–0.07 wt.% in harzburgites, 0.03–0.08 wt.% in dunites
and 0.16 wt.% in the wehrlite. For most xenoliths, the MgO contents
show negative correlation with both Al2O3 and CaO contents (Fig. 4a,
b). Due to their high modal contents of clinopyroxene (28 vol.% vs.
35 vol.%, respectively), both lherzolite KL3-27-1 andwehrlite 08KL-07
deviate from the correlations to higher CaO and MgO contents. Four
clinopyroxene-poor lherzolites, harzburgites and dunites plot in the

field of the depleted cratonic mantle, whereas other lherzolites are
plotted along the oceanic trend (Fig. 4c).

The Keluo mantle xenoliths display three different bulk-rock rare
earth element (REE) patterns. The fertile lherzolites show flat REE
patterns with a slight enrichment in light rare earth elements (LREE;
Fig. 5a). Two phlogopite-bearing lherzolites (08KL-01 and 08KL-11)
display different REE patterns: sample 08KL-01 has a REE pattern
similar to those of the phlogopite-free lherzolites, whereas sample
08KL-11 displays fractionated REE pattern with a (La/Yb)n (n:
chondrite normalized) of 10.6. Both harzburgites and dunites are
enriched in LREE but display flat patterns in heavy rare earth element
(HREE; Fig. 5b). The harzburgite KL3-41 is distinguished from other

Table 1
Whole rock major and trace element compositions of the Keluo mantle xenoliths. Lz: lherzolite; Hz: harzburgite; D: dunite; W: wehrlite. Mineral modal contents were estimated by
method described in Herrmann and Berry (2002).

Sample BHVO-1 AGV-2 KL3-24 KL3-26 KL3-27-1 KL3-27-2 KL3-28 KL3-30 KL3-31 KL3-38 KL3-40 KL3-41

Lithology standard Hz Lz Lz D Lz Hz Lz Lz Hz Hz

Modal contents (vol.%)
Ol 74.1 63.4 50.3 93.6 60.3 77.9 64.7 74.3 78.6 71.2
Cpx 2.3 14.0 27.8 2.3 10.7 1.7 7.8 6.2 0.8 1.8
Opx 22.1 20.1 21.1 1.5 28.9 19.5 26.2 18.3 18.9 25.6
Sp 1.3 2.3 1.0 1.3 0.0 0.3 2.0 1.7 1.5 0.6
Phl 0 0 0 0 0 0 0 0 0 0
Rt 0 0 0 0 0 0 0 0 0 0

Major elements (wt.%)
SiO2 49.79 59.57 43.82 44.45 46.16 39.52 43.92 43.80 44.41 43.43 43.71 44.32
MgO 7.17 1.76 45.34 40.59 36.21 46.06 40.13 45.61 41.97 43.81 46.18 44.27
Al2O3 13.69 16.62 1.28 2.66 2.69 0.73 3.31 0.74 2.70 1.74 0.77 1.35
Fe2O3 12.37 6.92 8.14 8.46 7.48 12.89 8.91 9.07 8.48 9.12 8.20 8.78
TiO2 2.73 1.06 0.06 0.07 0.33 0.08 0.10 0.02 0.07 0.04 0.04 0.07
CaO 11.32 5.13 0.55 3.17 6.24 0.37 3.05 0.44 1.83 1.40 0.43 0.47
MnO 0.16 0.10 0.11 0.11 0.11 0.14 0.12 0.11 0.11 0.11 0.10 0.10
K2O 0.51 2.89 0.09 0.03 0.03 0.04 0.01 0.02 0.04 0.02 0.13 0.03
Na2O 2.14 4.14 0.10 0.17 0.28 0.03 0.16 0.03 0.12 0.07 0.10 0.07
P2O5 0.26 0.47 0.03 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.02 0.01
LOI 0.16 1.18 −0.15 −0.32 −0.08 −0.69 −0.34 −0.52 −0.36 −0.39 −0.28 −0.11
Total 100.31 99.84 99.38 99.40 99.46 99.19 99.38 99.34 99.39 99.35 99.38 99.36

Trace elements (ppm)
Sc 32 12 7 16 23 5 15 6 12 9 7 36
Ti 16,932 6556 336 354 1556 359 485 108 343 216 209 796
V 319 119 35 63 130 36 76 23 73 39 35 165
Cr 290 21 3330 4034 3869 10,566 3962 3429 4461 3672 4312 4660
Co 45 16 100 98 85 144 103 104 98 112 108 76
Ni 121 20 2317 2060 1731 2438 2105 2358 2181 2353 2560 1737
Cu 139.02 57.90 2.39 11.93 27.32 5.44 6.01 1.63 8.12 3.31 2.10 29.84
Rb 10.48 67.42 1.74 0.41 0.53 0.62 0.15 0.41 0.48 0.31 1.89 0.17
Sr 409.1 640.3 21.7 18.3 22.2 14.9 13.9 7.2 18.2 9.7 13.2 31.4
Y 26.6 19.3 0.8 2.2 3.8 0.3 2.8 0.3 1.4 0.8 0.4 5.8
Zr 185.8 218.2 8.0 4.9 11.5 4.1 4.5 2.8 3.8 2.9 4.3 7.8
Nb 18.64 14.02 1.12 0.32 0.59 0.67 0.12 0.33 0.33 0.17 0.88 0.17
Ba 138.0 1122.7 25.0 11.7 9.0 13.3 8.7 7.9 21.3 7.3 17.9 13.9
La 14.2 39.1 1.7 1.4 1.2 1.8 0.6 0.5 1.5 0.6 1.0 1.6
Ce 39.12 69.46 3.70 2.57 3.47 3.11 1.47 1.02 2.31 1.18 2.07 4.25
Pr 5.41 8.08 0.40 0.32 0.59 0.29 0.24 0.13 0.25 0.16 0.25 0.70
Nd 27.06 33.87 1.55 1.36 3.05 0.89 1.16 0.51 0.94 0.69 0.90 3.44
Sm 6.29 5.88 0.27 0.35 0.86 0.12 0.35 0.10 0.20 0.16 0.17 0.97
Eu 2.09 1.45 0.08 0.12 0.28 0.04 0.12 0.03 0.07 0.05 0.05 0.31
Gd 6.15 4.84 0.25 0.39 0.90 0.12 0.41 0.09 0.23 0.16 0.15 1.11
Tb 1.01 0.69 0.03 0.06 0.14 0.01 0.08 0.01 0.04 0.02 0.02 0.18
Dy 5.45 3.71 0.14 0.41 0.79 0.06 0.48 0.07 0.25 0.15 0.10 1.09
Ho 0.97 0.69 0.03 0.08 0.15 0.01 0.11 0.01 0.06 0.03 0.02 0.23
Er 2.61 1.88 0.07 0.22 0.36 0.03 0.30 0.03 0.16 0.09 0.04 0.61
Tm 0.35 0.26 0.01 0.03 0.05 0.00 0.05 0.01 0.03 0.01 0.01 0.09
Yb 2.13 1.76 0.08 0.23 0.30 0.03 0.31 0.03 0.18 0.11 0.04 0.57
Lu 0.31 0.27 0.01 0.04 0.05 0.01 0.05 0.01 0.03 0.02 0.01 0.09
Hf 4.48 5.16 0.18 0.13 0.45 0.09 0.14 0.05 0.10 0.06 0.10 0.33
Ta 1.23 0.95 0.06 0.02 0.04 0.03 0.01 0.02 0.02 0.01 0.04 0.01
Pb 2.46 35.00 0.54 1.42 0.27 0.31 0.36 0.84 0.62 0.09 0.63 0.55
Th 1.47 6.78 0.15 0.14 0.09 0.11 0.04 0.04 0.10 0.03 0.12 0.09
U 0.42 1.82 0.03 0.06 0.03 0.03 0.03 0.02 0.07 0.02 0.03 0.05
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harzburgites by its flat REE pattern; its HREE contents are distinctly
higher than other harzburgites. The wehrlite 08KL-07 shows an
inverse spoon-shaped REE pattern and has higher HREE contents than
most harzburgites and dunites (Fig. 5b).

All theKeluomantle xenoliths showvariable enrichment in large ion
lithophile elements (LILEs; e.g., Rb, Ba, U). The lherzolites commonly
show significant negative Nb, Ta and Ti anomalies (Fig. 5c). In contrast,
the phlogopite-bearing lherzolite 08KL-11 shows positive Nb and Ta
anomalies (Fig. 5c). The harzburgites, dunites andwehrlite show a clear
negative Ti anomaly, (Fig. 5d). Both dunites and wehrlite have negative
Nb and Ta anomalies, whereas the harzburgites display either positive
or negative Nb and Ta anomalies (Fig. 5d).

4.2. Mineral compositions and equilibrium temperatures

Mineral major and trace element compositions of Keluo mantle
xenoliths are given in Appendix Table S1 and Table S2, respectively.

4.2.1. Olivine
Olivine in the Keluo xenoliths has a forsterite content [Fo; =100×

Mg/(Mg+Fe)] of 88.2–91.8. The lherzolites have lower olivine Fo
than the harzburgites, i.e., ~88.1–90.8 and. 90.8–91.8, respectively.
Both dunites, KL3-27-2 and 08KL-13, have different Fo contents, i.e.,
88.5 and 90.3, respectively. Olivine in the wehrlite has a Fo of 90.7. In
the olivine Fo vs. modal content diagram (Fig. 4d), no Keluo mantle

Table 1
Whole rock major and trace element compositions of the Keluo mantle xenoliths. Lz: lherzolite; Hz: harzburgite; D: dunite; W: wehrlite. Mineral modal contents were estimated by
method described in Herrmann and Berry (2002).

08KL-01 08KL-02 08KL-03 08KL-04 08KL-05 08KL-07 08KL-09 08KL-10 08KL-11 08KL-12 08KL-13

Lz Hz Lz Lz Lz W Lz Lz Lz Lz D

Modal contents (vol.%)
73.1 78.1 58.2 68.5 74.0 64.0 52.7 61.6 77.5 76.4 90.8
6.4 1.2 11.3 8.0 8.8 35.0 16.0 13.8 8.7 6.4 4.1

19.3 20.0 27.5 21.0 15.9 0.0 29.7 22.1 5.1 15.1 4.7
1.7 0.0 3.0 3.0 1.9 1.1 3.0 3.0 0.0 1.9 0.4

b0.1 0 0 0 0 0 0 0 8.9 0 0
0 0 0 0 0 0 0 0 b0.1 0 0

Major elements (wt.%)
44.10 43.88 44.54 43.32 43.31 45.66 44.88 43.76 43.64 42.75 42.08
43.27 45.54 39.44 42.19 43.08 37.63 37.80 39.84 43.69 44.05 46.96
1.93 0.94 3.48 2.95 1.95 1.82 3.99 3.50 1.57 1.83 0.65
8.43 7.94 8.78 8.94 9.21 6.86 9.21 8.90 7.70 9.20 8.80
0.06 0.04 0.14 0.08 0.05 0.16 0.15 0.12 0.41 0.06 0.03
1.29 0.63 2.85 1.77 1.83 6.97 3.30 3.01 1.70 1.29 0.95
0.12 0.11 0.12 0.12 0.11 0.09 0.12 0.11 0.10 0.11 0.10
0.02 0.18 0.03 0.03 0.02 0.03 0.05 0.02 0.36 0.07 0.03
0.08 0.13 0.19 0.09 0.11 0.23 0.20 0.18 0.15 0.10 0.05
0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.01
0.10 −0.02 −0.19 −0.13 −0.32 0.03 −0.31 −0.09 0.06 −0.13 −0.31

99.39 99.39 99.39 99.36 99.38 99.49 99.39 99.38 99.40 99.35 99.34

Trace elements (ppm)
11 8 15 13 13 26 17 15 12 11 7

259 208 695 373 294 877 745 611 1999 324 172
52 38 93 63 58 91 89 75 64 47 30

4043 4176 4120 3346 5032 6259 3942 4480 3894 4677 4557
103 108 106 109 117 94 104 108 112 122 128

2178 2503 2188 2260 2596 2146 1972 2212 2736 2574 2833
2.73 2.87 7.32 5.31 7.00 23.65 6.29 13.72 18.22 7.94 5.41
0.37 2.49 0.54 0.44 0.40 0.35 0.84 0.33 4.95 1.31 0.49
7.4 9.1 12.2 8.3 11.8 35.1 19.6 12.1 50.6 27 13.4
0.9 0.5 2.8 1.4 1.5 3.8 3.0 2.9 1.9 1.0 0.7
3.1 3.8 6.6 3.9 4.2 18.9 7.8 5.0 18.9 5.8 4.8
0.32 1.83 0.46 0.37 0.37 0.17 0.52 0.29 3.26 0.71 0.31
7.7 19.7 10.1 6.0 8.8 10.0 21.1 5.8 106 44.2 9.6
0.4 0.9 0.6 0.5 0.7 1.7 1.2 0.4 1.8 2.5 1.0
1.01 2.03 1.50 1.10 1.37 5.16 2.39 1.06 5.50 3.69 1.64
0.14 0.25 0.24 0.16 0.18 1.02 0.33 0.18 0.95 0.39 0.18
0.62 0.87 1.35 0.73 0.73 5.46 1.55 0.89 4.62 1.43 0.66
0.16 0.15 0.41 0.20 0.18 1.35 0.41 0.28 0.99 0.29 0.16
0.05 0.05 0.13 0.07 0.06 0.40 0.14 0.11 0.30 0.09 0.05
0.16 0.15 0.47 0.23 0.21 1.17 0.49 0.40 0.85 0.28 0.17
0.03 0.02 0.08 0.04 0.04 0.17 0.09 0.08 0.11 0.04 0.03
0.16 0.09 0.51 0.25 0.27 0.85 0.57 0.55 0.49 0.21 0.15
0.04 0.02 0.11 0.06 0.06 0.15 0.13 0.12 0.08 0.04 0.03
0.10 0.04 0.31 0.16 0.17 0.37 0.36 0.32 0.17 0.10 0.07
0.02 0.01 0.05 0.03 0.03 0.05 0.05 0.05 0.02 0.02 0.01
0.11 0.04 0.33 0.18 0.18 0.31 0.36 0.34 0.12 0.12 0.07
0.02 0.01 0.05 0.03 0.03 0.05 0.06 0.06 0.02 0.02 0.01
0.08 0.10 0.22 0.12 0.11 0.46 0.24 0.16 0.58 0.15 0.14
0.02 0.07 0.03 0.02 0.02 0.02 0.03 0.02 0.22 0.04 0.02
0.35 0.66 0.40 0.15 0.15 0.86 0.42 0.19 2.46 2.20 10.52
0.04 0.13 0.06 0.05 0.04 0.10 0.07 0.03 0.09 0.16 0.09
0.01 0.02 0.01 0.01 0.01 0.07 0.05 0.01 0.02 0.11 0.02
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xenoliths fall within the Archean field. Two harzburgites and three
lherzolites plot within the Proterozoic field, but most lherzolites plot
outside the Phanerozoic field. Two dunites clearly deviate from the
oceanic trend to low olivine Fo but high modal olivine contents.
Olivine from the lherzolites and harzburgites has NiO contents of
0.32–0.41 wt.% and 0.36–0.41 wt.%, respectively. The NiO contents of
two dunites, KL3-27-2 and 08KL-13, are 0.35 wt.% and 0.4 wt.%,
respectively. Olivine in the wehrlite contains 0.39 wt.% NiO.

4.2.2. Orthopyroxene
Orthopyroxene from the Keluo mantle xenoliths has Mg#

[=Mg/(Mg+Fe)] varying from 0.89 to 0.93. The ratios of the
olivine/orthopyroxeneMg# in all samples are close to unity, suggesting
equilibrium in all xenoliths. Orthopyroxene of the lherzolites contains
2.27–4.40 wt.% Al2O3 and 0.25–1.06 wt.% CaO, whereas those of the
harzburgites have 1.88–3.73 wt.% Al2O3 and 0.41–0.86 wt.% CaO.

Orthopyroxene of both dunites contains 1.01–2.11 wt.% Al2O3 and
0.14–0.39 wt.% CaO.

4.2.3. Clinopyroxene
Clinopyroxene from the lherzolites has lower Mg# than those of

the harzburgites, i.e., 0.89–0.92 and 0.92–0.94, respectively. Clinopyr-
oxene from both dunites hasMg# of 0.87 and 0.93, whereas that of the
wehrlite has Mg# of 0.93. Clinopyroxene from the lherzolites contains
3.89–6.34 wt.% Al2O3, 0.32–0.9 TiO2 and 0.93–1.4 wt.% Na2O, whereas
those of the harzburgites are 0.76–4.93 wt.%, 0.11–0.51 wt.% and
0.53–1.17 wt.%, respectively. Clinopyroxene of dunites contains 3.15–
6.47 wt.% Al2O3, 0.31–0.82 TiO2 and 1.02–1.49 wt.% Na2O, whereas
clinopyroxene of the wehrlite has Al2O3, TiO2 and Na2O contents of
3.24 wt.%, 0.45 wt.% and 0.66 wt.%, respectively.

Clinopyroxene from the phlogopite-free lherzolites display consis-
tent and flat REE patterns (Fig. 6a) and show negative anomalies of Ba,

a b

c d

e f

Fig. 3. Microtextures of the Keluo mantle xenoliths. (a) a hand specimen photo in the field. (b) porphyroclastic texture shown in the lherzolites (08KL-04), in which olivine is
commonly anhedral and surrounded by orthopyroxene porphyclasts. (c) porphyroclastic texture shown in the harzburgites (KL3-24), in which olivine is commonly euhedaral and
clinopyroxene displays poikilitic texture. (d) porphyroclastic texture shown in the dunites (KL3-27-2), in which olivine shows weak kink-band. (e) equigranular texture shown by
the wehrlite (08KL-07), in which the round olivine is surrounded by clinopyroxene. (f) phlogopite veinlets in the lherzolite 08KL-11. Ol: olivine; Opx: orthopyroxene; Cpx:
clinopyroxene; Sp: spinel; Phl: phlogopite.
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Nb, Ta, Zr, Hf and Ti (Fig. 6b). However, the contents of both LREE and
MREE (middle rare earth elements) are distinctly higher in the
phlogopite-bearing lherzolite (08KL-11) than other lherzolites
(Fig. 6a). Clinopyroxene in both harzburgites and wehrlite show
enrichment in LREE (Fig. 6c), and display negative Nb, Ta, Zr, Hf and Ti
anomalies (Fig. 6d). Clinopyroxene in both dunites displays different
REE pattern. Clinopyroxene in sample 08KL-13 shows a LREE-enriched
pattern that is similar to those of the harzburgites, whereas
clinopyroxene from sample KL3-27-2 has LREE and MREE contents
distinctly lower than those of the harzburgites (Fig. 6c).

4.2.4. Spinel
Spinel from the Keluo mantle xenoliths has variable compositions,

with Cr#[=Cr/(Cr+Al)] values of 0.08–0.54 for the lherzolites, 0.14–
0.75 for the harzburgites, 0.48–0.61 for the dunites and 0.42 for the
wehrlite. Spinel from the lherzolites contains 0.01–1.60 wt.% TiO2,
whereas in the harzburgites it contains 0.03–0.74 wt.% TiO2. Spinel in
dunite KL3-27-2 has the highest TiO2 content (1.64 wt.%) among the
Keluo mantle xenoliths, whereas the other dunite (08KL-13) contains
0.29 wt.% TiO2. Spinel in the wehrlite has a TiO2 content of 0.46 wt.%.

4.2.5. Phlogopite and rutile
Phlogopite from the Keluo mantle xenoliths has Mg# of 0.92

within the range of mantle phlogopite. It also contains 2.58–3.71 wt.%
TiO2 and 9.41–9.55 wt.% K2O, supporting its metasomatic origin.
Rutile only occurs in sample 08KL-11, and contains 86.38 wt.% TiO2,
6.34 wt.% FeO and 6.13 wt.% MgO. Trace elements have been
measured for phlogopite, which shows fractionated REE patterns
and clear positive anomalies in Rb, Ba, Sr and Ti (Fig. 7a, b).

4.3. Clinopyroxene Sr–Nd–Hf isotopes

The Rb–Sr, Sm–Nd and Lu–Hf isotopic compositions of the
clinopyroxene are listed in Table 2. Clinopyroxene in most samples
has 87Rb/86Sr ratios less than 0.02 and 87Sr/86Sr ratios varying between
0.703635 and 0.706267. Although it has the highest 87Rb/86Sr ratio
(0.118), clinopyroxene of sample 08KL-09 does not have the highest
87Sr/86Sr ratio (0.704416). 143Nd/144Nd ratios range from 0.51264 to
0.51303, giving εNd values between−0.1 and+7.6. TheNd isotopes of
most xenoliths give Proterozoic model ages (0.57–2.31 Ga), whereas
two samples give model ages close to, or even greater than, the age of
the Earth. Clinopyroxene of the Keluo xenoliths shows no correlation
between 87Sr/86Sr and εNd (Fig. 8a). Clinopyroxene of all but sample
08KL-13 has 176Hf/177Hf ratios that vary from 0.282839 to 0.283884
(Fig. 8b), giving a εHf range of +2.4~+39.3. Clinopyroxene from
sample 08KL-13 has the lowest 176Hf/177Hf ratio of 0.282548 among
the Keluo xenoliths, giving a εHf of −7.9. Both Nd and Hf isotopes of
clinopyroxene in 08KL-13 give similar model ages of 1.28 Ga.

4.4. Highly siderophile elements (HSEs) and Re–Os isotopes

The HSE and Re–Os isotopic data of the Keluo xenoliths are given in
Table 3. The Keluo mantle xenoliths contain 0.28–3.79 ppb Os, 0.83–
1.81 ppb Ir, 1.57–4.21 ppb Ru, 1.81–9.35 ppb Pt, 0.23–6.84 ppb Pd and
0.002–1.731 ppb Re. Most Keluo xenoliths have sub-chondritic Os/Ir
ratios, with (Os/Ir)n (n: chondrite-normalized; (McDonough and Sun,
1995)) ratios of 0.87–1.03. Both 08KL-05 and 08KL-07 have
suprachondritic Os/Ir ratios, with (Os/Ir)n ratios of 1.65 and 1.67,
respectively. The Ru/Ir ratios of almost all Keluo mantle xenoliths are
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Fig. 4. Whole rock major element compositions of the Keluo mantle xenoliths. (a) MgO vs. Al2O3; (b) MgO vs. CaO; (c) Al2O3 vs. CaO, in which the depleted area is shown for
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Griffin et al., 1998). PM: primitive mantle.

239Y.-L. Zhang et al. / Lithos 126 (2011) 233–247



Author's personal copy

La Ce Pr Nd PmSm Eu Gd Tb Dy Ho Er Tm Yb Lu

La Ce Pr Nd PmSm Eu Gd Tb Dy Ho Er Tm Yb Lu

S
am

pl
e/

C
ho

nd
rit

e

Rb
Ba

Th
U

Nb
Ta

La
Ce

Sr
Nd

Sm
Zr

Hf
Eu

Ti
Gd

Tb
Dy

Ho
Er

Tm
Yb

Lu

Rb
Ba

Th
U

Nb
Ta

La
Ce

Sr
Nd

Sm
Zr

Hf
Eu

Ti
Gd

Tb
Dy

Ho
Er

Tm
Yb

Lu

08KL-11
08KL-11

a

b

c

d

100

10

1

0.1

0.01

S
am

pl
e/

C
ho

nd
rit

e

100

10

1

0.1

0.01

S
am

pl
e/

P
rim

iti
ve

 m
an

tle

100

10

1

0.1

0.01

S
am

pl
e/

P
rim

iti
ve

 m
an

tle

100

10

1

0.1

0.01

KL3-41

KL3-41

Dunite

Harzburgite
Wehrlite

Phlogopite-bearing lherzolites

Phlogopite-free lherzolites

Dunite

Harzburgite
Wehrlite

Phlogopite-bearing lherzolites

Phlogopite-free lherzolites

Fig. 5.Whole rock chondrite-normalized REE patterns (a, b) and primitivemantle-normalized element patterns (c, d) of the Keluomantle xenoliths. The normalization values of both
chondrite and primitive mantle are from Sun and McDonough (1989).

08KL-11

08KL-11

KL3-27-2

KL3-27-2

a b

c d

La Ce Pr Nd PmSm Eu Gd Tb Dy Ho Er Tm Yb Lu

La Ce Pr Nd PmSm Eu Gd Tb Dy Ho Er Tm Yb Lu

C
px

/C
ho

nd
rit

e

Rb
Ba

Th
U

Nb
Ta

La
Ce

Sr
Nd

Sm
Zr

Hf
Eu

Ti
Gd

Tb
Dy

Ho
Er

Tm
Yb

Lu

Rb
Ba

Th
U

Nb
Ta

La
Ce

Sr
Nd

Sm
Zr

Hf
Eu

Ti
Gd

Tb
Dy

Ho
Er

Tm
Yb

Lu

C
px

/C
ho

nd
rit

e

C
px

/P
rim

iti
ve

 m
an

tle
C

px
/P

rim
iti

ve
 m

an
tle

Dunite

Harzburgite
Wehrlite

Dunite

Harzburgite
Wehrlite

Phlogopite-bearing lherzolites

Phlogopite-free lherzolites

Phlogopite-bearing lherzolites

Phlogopite-free lherzolites

100

10

1

0.1

100

10

1

0.1

1000

100

10

1

0.1

100

10

1

0.1

1000

0.01

0.01

Fig. 6. Chondrite-normalized rare earth element patterns (a, b) and primitive mantle-normalized element patterns (c, d) for clinopyroxenes from Keluo mantle xenoliths.

240 Y.-L. Zhang et al. / Lithos 126 (2011) 233–247



Author's personal copy

suprachondritic,
w
hich

has
been

suggested
to

be
a
feature

of
the

upper
m
antle

(Becker
et

al.,
2006;

Liu
et

al.,
2009).

The
lherzolites

have
relatively

flat
patterns

from
O
s
to

Pd,but
display

a
big

variation
in

Re
(Fig.

9a).
Three

lherzolites
(08K

L-04,
08K

L-05
and

08K
L-12)

show
depletion

in
Re

relative
to

Pd,w
hereas

other
lherzolites

show
variable

enrichm
ent

ofRe
over

Pd.The
phlogopite-bearing

lherzolite
(08K

L-11)
h
as

th
e

h
igh

est
R
e

con
ten

t
u
p

to
1.731

p
pb.

Th
e

harzburgite
(08K

L-02)
and

dunite
(08K

L-13)
show

depletion
of

both
Pt

and
Pd

relative
to

O
s,Ir

and
Ru,w

hereas
the

w
ehrlite

(08K
L-

02)
displays

a
flat

pattern
from

O
s
to

Pd
(Fig.9b).H

ow
ever,they

all
show

variable
enrichm

ent
of

Re
over

Pd.
The

K
eluo

m
antle

xenoliths
do

not
show

any
correlation

betw
een

1
87Re/ 1

8
8O

s
and

1
8
7O

s/ 1
8
8O

s
(Fig.

10a).
Their

1
8
7Re/ 1

88O
s
ratios

are
highly

variable
ranging

from
0.02

to
12.16,halfofw

hich
are

largerthan
the

inferred
values

ofthe
PU

M
(M

eiselet
al.,2001).The

K
eluo

m
antle

xen
olith

s
h
ave

h
eterogen

eous
O
s

isotope
com

position
s,

w
ith

1
87O

s/ 1
88O

s
ratios

varying
from

0.11458
to

0.13194.
A
ll
sam

ples
but

the
harzburgite

K
L3-41

have
1
8
7O

s/ 1
88O

s
ratios

low
er

than
the

inferred
values

(0.1296
±

6)
ofthe

PU
M

(M
eiseletal.,2001).TheirRe-depletion

ages(T
R
D )

calculated
relative

to
the

PU
M

vary
from

2.09
G
a
to

a
m
odern

age.
H
ow

ever,
only

eight
sam

ples
give

a
m
eaningful

Re–O
s
isotope

m
odelage

(T
M
A )

varying
from

0.01
to

2.64
G
a.O

ther
sam

ples
give

T
M
A

either
older

than
the

age
of

the
Earth

or
a
future

age,
suggesting

a
disturbance

ofthe
Re

–O
s
isotope

system
in

these
sam

ples.M
ost

K
eluo

m
an

tle
xen

olith
s

sh
ow

an
ap

p
roxim

ate
correlation

betw
een

1
87O

s/ 1
88O

s
and

bulk
A
l2 O

3
contents

(Fig.10b),w
hereas

the
dunites,

together
w
ith

tw
o
harzburgites,clearly

deviate
from

this
correlation.

5.D
iscu

ssion

5.1.M
elt

depletion
and

m
etasom

atic
processes

Th
e

K
eluo

m
an

tle
xen

olith
s

sh
ow

differen
t

m
in
eral

m
odal

conten
ts,

ranging
from

fertile
lh
erzolite

via
clin

opyroxen
e-poor

ab

La
C

e
P

r
N

d
P

m
S

m
E

u
G

d
T

b
D

y
H

o
E

r
T

m
Y

b
Lu

R
bB

a T
hU

N
bT

a LaC
e S

rN
d S

mZ
r H

fE
u T

iG
d T

bD
y H

oE
r T

mY
b Lu

Phlogopite/Chondrite

100101

0.1

0.01

Phlogopite/PM

100

1000101

0.1

0.01

08K
L-01

08K
L-11

08K
L-01

08K
L-11

Fig.
7.

Chondrite-norm
alized

REE
patterns

(a)
and

prim
itive

m
antle-norm

alized
elem

ent
patterns

(b)
for

phlogopite
of

K
eluo

m
antle

xenoliths.

Table 2
Sr–Nd–Hf isotope compositions of clinopyroxene of the Keluo mantle xenoliths. The eruption age of the Keluo volcano is from (Liu, 1987). The Sm–Nd and Lu–Hf isotope composition of the CHUR: 147Sm/144Nd=0.1967,
143Nd/144Nd=0.512638; 176Lu/177Hf=0.0332, 176Hf/177Hf=0.282772. The Sm–Nd and Lu–Hf isotope compositions of the depleted mantle: 147Sm/144Nd=0.2137, 143Nd/144Nd=0.513151; 176Lu/177Hf=0.0384, 176Hf/177Hf=0.28325.

t (Ma) Rb
(ppm)

Sr
(ppm)

87Rb/86Sr 87Sr/86Sr 2σm ISr Sm
(ppm)

Nd
(ppm)

147Sm/144Nd 143Nd/144Nd 2σm TDM
(Ga)

εNd(t) Lu
(ppm)

Hf
(ppm)

176Lu/177Hf 176Hf/177Hf 2σm εHf(t) TDM
(Ga)

Standard
BCR-1 0.704977 0.000012 0.512655 0.000005 0.282866 0.000006
BHVO-2 0.703474 0.000011 0.513000 0.000015 0.283109 0.000005

Sample
KL-3-24 0.13 1.23 213.9 0.017 0.706267 0.000012 0.7063 0.167 2.464 0.0097 0.282839 0.000009 2.4 0.76
KL-3-26 0.13 0.40 68.9 0.017 0.704394 0.000013 0.7044 2.614 8.310 0.1902 0.512792 0.000012 2.31 2.80 0.110 0.560 0.0279 0.283255 0.000027 17.1 −0.03
KL3-27-1 0.13 0.20 55.4 0.011 0.703776 0.000013 0.7038 2.994 10.36 0.1747 0.512683 0.000011 1.82 0.66 0.087 0.975 0.0127 0.282919 0.000008 5.2 0.69
KL3-27-2 0.13 0.24 64.6 0.011 0.703809 0.000014 0.7038 0.123 1.373 0.0128 0.282913 0.000008 5.0 0.70
KL3-28 0.13 0.19 61.3 0.009 0.704228 0.000012 0.7042 2.236 7.177 0.1884 0.512912 0.000013 1.43 5.18 0.169 0.621 0.0388 0.283369 0.000020 21.1 14.65
KL3-30 0.13 0.27 124.7 0.006 0.705298 0.000013 0.7053 0.069 0.806 0.0121 0.282882 0.000019 3.9 0.74
KL3-38 0.13 0.20 82.2 0.007 0.704969 0.000013 0.7050 2.237 8.256 0.1638 0.512775 0.000014 1.15 2.50 0.090 0.505 0.0254 0.283256 0.000014 17.1 −0.03
08KL-01 0.13 0.07 63.2 0.003 0.704574 0.000017 0.7046 2.029 6.874 0.1785 0.512799 0.000007 1.52 2.99 0.165 0.761 0.0308 0.283183 0.000025 14.5 0.47
08KL-03 0.13 0.12 56.0 0.006 0.703635 0.000010 0.7036 2.626 7.762 0.2046 0.512888 0.000008 4.35 4.68 0.259 1.066 0.0346 0.283287 0.000011 18.2 −0.52
08KL-04 0.13 0.18 49.5 0.011 0.704182 0.000011 0.7042 1.935 6.007 0.1948 0.512717 0.000009 3.47 1.39 0.217 1.019 0.0303 0.283155 0.000013 13.5 0.63
08KL-05 0.13 0.16 113.6 0.004 0.704334 0.000013 0.7043 1.681 6.189 0.1642 0.512990 0.000012 0.49 6.74 0.224 0.925 0.0344 0.283884 0.000014 39.3 −9.27
08KL-07 0.13 0.22 101.3 0.006 0.704570 0.000016 0.7046 4.222 19.04 0.1341 0.512855 0.000014 0.57 3.91 0.103 1.304 0.0112 0.283027 0.000010 9.0 0.44
08KL-09 0.13 3.17 77.7 0.118 0.704416 0.000013 0.7044 1.983 6.647 0.1804 0.512643 0.000011 2.31 −0.05 0.243 1.242 0.0278 0.283173 0.000009 14.2 0.39
08KL-10 0.13 0.10 67.2 0.004 0.704963 0.000008 0.7050 1.686 4.840 0.2107 0.513033 0.000010 5.91 7.58 0.269 0.891 0.0428 0.283286 0.000012 18.2 0.43
08KL-11 0.13 0.20 329.2 0.002 0.704538 0.000008 0.7045 8.882 42.22 0.1272 0.512684 0.000006 0.82 0.22 0.100 5.933 0.0024 0.282882 0.000004 3.9 0.54
08KL-12 0.13 0.27 75.2 0.010 0.704791 0.000010 0.7048 2.208 7.639 0.1748 0.512796 0.000010 1.39 2.92 0.187 0.875 0.0304 0.283162 0.000015 13.8 0.59
08KL-13 0.13 0.83 154.8 0.016 0.704960 0.000011 0.7050 3.133 12.15 0.1559 0.512664 0.000009 1.28 0.27 0.155 2.342 0.0094 0.282548 0.000010 −7.9 1.28 241
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lherzolites to strongly refractory harzburgites. Such a modal variation
is accompanied by changes in mineral and bulk-rock chemical
compositions. This indicates that the Kelou peridotite xenoliths
represent the refractory residues left after variable degrees of melt
depletion. The degrees of partial melting experienced by the Kelou
xenoliths can be estimated using the Y and Yb contents of
clinopyroxene, as described by Norman (1998). Comparison of Y
and Yb contents in clinopyroxene and the modeledmelting trend give
melting degrees of 1–5% for lherzolites and 3–11% for harzburgites
and dunites (Fig. 11). However, degrees of partial melting of the Kelou
mantle xenoliths might be underestimated, as most Kelou mantle
xenoliths, in particular the harzburgites and dunites, show charac-
teristics of melt metasomatism. For example, both bulk-rock and
clinopyroxene of most Keluo mantle xenoliths show variable
enrichment in incompatible elements (Figs. 5 and 6). Furthermore,
olivine in the dunite (KL3-27-2) has a Fo content lower than those in
most lherzolites and harzburgites. Dunites with low-Fo olivines could
be produced by reaction with basaltic melts (Morgan and Liang,
2005), which has been proposed for the discordant dunite bodies in
ophiolites (Kelemen, 1990; Suhr, 1999). These characteristics are
clearly not related to melt depletion, but are due to the interaction of
the xenoliths with metasomatic melts.

The metasomatic agents proposed to account for the observed
incompatible element features and mineralogy in mantle xenoliths
include silicate melts (Zangana et al., 1999), hydrous (Downes, 2001)
or CO2-rich fluids (O'Reilly and Griffin, 1988), and carbonatitic melts
(Coltorti et al., 1999; Ionov et al., 1997; Rudnick et al., 1993; Yaxley
et al., 1998). Occurrence of phlogopite and rutile in two samples
indicates modal metasomatism by hydrous melts in these samples,
whereas absence of secondary minerals in most samples supports the
cryptic metasomatism responsible for the enrichment of the incom-
patible elements. It has been suggested that mantle xenoliths
metasomatized by carbonatite melts would be more enriched LREE
but depleted in HFSEs (e.g., Ti and Zr) than by silicate melts (Coltorti
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et al., 1999). Clinopyroxenes in the Kelou mantle xenoliths have low
La/Yb but high Ti/Eu ratios, which are consistent with metasomatism
by silicate melts rather than carbonatite melts (Fig. 12). However, the
formation of wehrlite (08KL-07) and the elevated CaO/Al2O3 ratios in
two samples (KL3-27-1 and 08KL-07) imply that the lithospheric
mantle was locally modified by carbonatite melt.

5.2. Effect of secondary processes on Re–Os isotopes

After melt extraction and stabilization, the lithospheric mantle
might also undergo various secondary processes, such as refertiliza-
tion, melt metasomatism and sulfide breakdown, which have the
potential to disturb Re–Os isotope systematics. As discussed above,
the Keluo mantle xenoliths have been partially metasomatized by
silicate melts and probably carbonatite melts. Although it has been
suggested that Os isotopes of mantle peridotites can survive
secondary processes and provide robust age information (Rudnick
and Walker, 2009), the effects of these metasomatic processes should
be evaluated before we use the Re–Os isotopes to constrain the age of
the lithospheric mantle.

Most of the Keluo mantle xenoliths that have been analyzed for
HSE compositions show enrichment in Re over Pd (Fig. 9), and Re
contents of some xenoliths are higher than the PUM (0.34±6 ppb;
Meisel et al., 2001). This implies the addition of Re to these
samples during metasomatism. High Re contents also result in high
187Re/188Os ratios in these samples; in particular, sample KL3-41 that
has a 187Re/188Os ratio up to 12. However, it should be noted that
several samples with low Re contents also have high 187Re/188Os
ratios. For example, sample KL3-26 contains 0.067 ppb Re, which is
much lower the PUM, but has 187Re/188Os ratio (0.55) higher than the
PUM (0.43; Meisel et al., 2001). This might be ascribed to the low Os
contents of the Keluo mantle xenoliths, especially for the KL-series
samples. Most of the KL-series xenoliths have Os contents less than

1 ppb, which is considerably lower than the 08KL-series samples
(Table 3). The reason for this is not clear, as there is no obvious
difference in textures and compositions between samples from these
two series.

It has been demonstrated that some mantle xenoliths commonly
have Os contents lower than those of the compositionally similar
massif and abyssal peridotites, and this has been attributed to sulfide
breakdown (Handler et al., 1999; Liu et al., 2010b). Sulfide breakdown
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is a common phenomenon in many peridotitic mantle xenoliths and
may be related to percolation of sulfur-undersaturated melts
associated with the host volcanism (Reisberg et al., 2005) or post-
eruption oxidative weathering (Handler et al., 1999). It has been
suggested that sulfide breakdown occurred immediately prior to, or
coincident with the entrainment of the xenoliths in the host lava has
negligible effect on the Os isotope compositions (Rudnick andWalker,
2009).

Melt-rock reaction is anotherwaypossible to reduce theOs contents
ofmantle peridotites. At highmelt/rock ratios, the undersaturatedmelts
tend to scavenge the primary unradiogenic Os from the mantle
peridotites, resulting in the significant decrease in Os concentrations
(Büchl et al., 2002). In this case, the secondary sulfides subsequently
precipitated from the later melts will dominate the Os isotope
compositions of the ‘reactive’ peridotites. Precipitation of secondary
sulfides would add radiogenic Os to the reactive harzburgites and
dunites, resulting in radiogenic 187Os/188Os ratios (Büchl et al., 2002).
Low-Fo contents of olivine in the dunite KL3-27-2 support its reactive
origin. Its low Os concentration (0.81 ppb) reflects the significant
removal of the primaryOs,whereas its radiogenic 187Os/188Os (0.12981)
but low 187Re/188Os ratios indicate the addition of radiogenic Os into this
sample. The harzburgite KL3-41 with an even lower Os content
(0.28 ppb) should be even more sensitive to the addition of secondary
Os, as reflected by its 187Os/188Os ratio (0.13191), which is more
radiogenic than the inferred values (0.1296±8) of the PUM (Meisel
et al., 2001).

5.3. Age of the SCLM beneath eastern CAOB

There are various methods that can be used to constrain ages of
peridotites using the Re–Os system, including TMA model age, Re-
depletion age (TRD) and proxy-isochron age. The TMA model age used
the sample's measured Re/Os ratio to calculate the time of its
separation from the PUM reservoir. It may yield unreliable model
ages if Re has been removed or added into peridotites. Thirteen Keluo
mantle xenoliths yield impossible TMA model ages, i.e., negative or
greater than the Earth's age, reflecting themodification of Re/Os ratios
shortly before, during or since basalt entrainment. This is obvious for
sample KL3-41, which has an 187Re/188Os ratio (N12) significantly
higher than that of the PUM (0.43).

However, recent Re addition does not strongly affect the 187Os/188Os
ratio, because the time is too short for decay increase. Therefore, recent
addition of Re into mantle peridotites has little effect on TRD, which

assumes no Re is left in the residual mantle peridotites after melt
extraction. Samples KL3-27-2 and KL3-41, both with obvious Os
addition, give unreliable TRD. Other Keluo xenoliths give TRD (calculated
relative to the PUM) varying from 2.1 to 0.16 Ga. It should be noted that
the TRD age underestimates the true age of melting because of the
incomplete removal of Re, and represents the minimum age of melt
extraction (Walker et al., 1989). This is especially significant for
lherzolites, which commonly experience low degrees of melting and
retain abundant Re after melt extraction. Only the refractory harzbur-
gites with little residual Re can give a TRD age that approach the true age
of melting. Two refractory harzburgites KL3-40 and 08KL-02 with low
Al2O3 contents (0.77 wt.% and 0.94 wt.%, respectively) have very
unradiogenic 187Os/188Os ratios, giving the oldest TRD ages of 1.9–
2.1 Ga. A previous Re–Os isotope study on sulfides in mantle xenoliths
from the Xing-Meng Block have reported that the TRD are dominated by
Neoproterozoic to Mesozoic ages, with minor Paleoproterozoic to
Mesoproterozoic ages (Xu et al., 2008).

The proxy-isochron age has been commonly applied to determine
the model age of peridotites that are assumed to have a common
origin through melt extraction, in which the 187Os/188Os is plotted
against an immobile element that has a similar bulk partition
coefficient to Re during melting. Such elements include aluminum,
heavy rare earth elements (HREE) or yttrium (Peslier et al., 2000b;
Reisberg and Lorand, 1995). In the Al2O3-187Os/188Os plot (Fig. 10b),
the Keluo mantle xenoliths show a highly scattered but positive trend
among the lherzolites and three refractory harzburgites. It has been
argued that about 0.7% Al2O3 is left after Re is totally extracted from
the mantle peridotites (Handler and Bennett, 1999). Extrapolation of
the alumochron of the Keluo xenoliths to 0.7% Al2O3 corresponds to
an 187Os/188Os ratio of ~0.114, giving a TRD age of 2.1 Ga. This agrees
well with the TRD of the most refractory harzburgites. Therefore, the
Re–Os isotopes constrain that the SCLM beneath the Keluo area was
probably formed during the Paleoproterozoic.

Previous studies on abyssal peridotites have demonstrated that the
asthenospheric mantle is highly heterogeneous in Os isotopes
(Brandon et al., 2000; Harvey et al., 2006; Liu et al., 2008; Pearson
et al., 2007; Snow and Reisberg, 1995), in which some ancient
domains with ages up to 2 Ga can be preserved from the convecting
homogenization processes of the asthenosphere (Liu et al., 2008).
Therefore, the ancient Os model ages of some Keluo mantle xenoliths
might reflect the ancientmantle domains in the asthenosphere. In this
case, the SCLM beneath the eastern part of Central Asian Orogenic Belt
(CAOB) could be juvenile oceanic mantle with an ancient mantle
‘blob’ of the Paleoproterozoic age preserved. A similar mechanism has
been proposed to account for the Re–Os isotope composition of the
Cenozoic mantle xenoliths from both eastern NCC and NE China (Chu
et al., 2009; Zhou et al., 2007, 2010).

Nevertheless, the following evidence does not favor the existence
of SCLM beneath eastern CAOB representing young mantle accreted
from asthenosphere. Firstly, the Keluo mantle xenoliths show
pervasive metasomatism by K-rich fluids/melts and contain abundant
phlogopite, which only rarely occurs in the mantle xenoliths from
eastern NCC and northeastern China. Furthermore, clinopyroxene in
Keluo xenoliths have Sr–Nd–Hf isotope compositions distinct from
mantle xenoliths from both eastern NCC and northeastern China. In
the Sr–Nd isotope diagram, the Keluo mantle xenoliths plot near the
enriched end-member of the Cenozoic mantle xenoliths from eastern
NCC and northeastern China (Fig. 13a). The difference is clearer in the
Nd–Hf isotope diagram (Fig. 13b), in which most Keluo mantle
xenoliths plot outside the area defined by mantle xenoliths from the
eastern NCC and northeastern China. Finally, it has been concluded
that potassic basalts in the WEK area were derived from an old EM1-
type lithospheric mantle that was metasomatized at ca. 1.9 Ga (Zhang
et al., 1995, 1998). Both Nd and Hf isotopes of clinopyroxene from the
Keluomantle xenoliths also give ancientmodel ages, reflecting the old
metasomatic events in the SCLM (Table 2).
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5.4. Crust–mantle decoupling in eastern CAOB

As the residues formed after the extraction of continental crust, the
sub-continental lithospheric mantle (SCLM) is commonly coupled,
both mechanically and temporally, with the overlying crust
(Carlson et al., 2005; Pearson, 1999). However, the cratonic SCLM is
not always temporally coupled with the overlying crust. It has been
demonstrated that the old SCLM in some cratons (e.g., Slave and
Wyoming cratons) has been partly removed and replaced by young
mantle (Aulbach et al., 2004; Carlson et al., 1999; Griffin et al., 1999),
which resulted in a temporally and compositionally layered lithospheric
mantle. The North China Craton (NCC) provides the best case for
removal of old lithospheric mantle, in which the Archean lithospheric
mantle beneath the eastern NCC has been significantly removed (Gao
et al., 2002; Griffin et al., 1998; Menzies et al., 1993; Wu et al., 2003b;
Xu, 2001).

In contrast to the eastern NCC, a reverse crust–mantle temporal
structure is shown in the lithosphere beneath eastern part of the
Central Asian Orogenic Belt (CAOB; Fig. 14). The Re–Os isotopes of
mantle xenoliths reveal the existence of the Paleoproterozoic SCLM
beneath the CAOB during the Cenozoic. Furthermore, it has been
suggested that potassic basalts in theWEK areas were derived from an
ancient lithospheric mantle as old as the Paleoproterozoic i.e., ca.
1.9 Ga (Zhang et al., 1995, 1998). Nevertheless, previous studies
on both granites and felsic volcanic rocks have suggested that the
crustal growth in the CAOB was predominately occurred since the
Neoproterozoic, with a little in Mesoproterozic (Ge et al., 2007; Hong

et al., 2000; Jahn et al., 2000, 2004; Sui et al., 2007; Wu et al., 2000,
2002, 2003a; Zhang et al., 2010). A previous study on zircons from
Longzheng granites in the Keluo area has obtained that positive εHf (t)
values of +6–+13 and model ages of 511–958 Ma (Zhang et al.,
2010). Therefore, the SCLM beneath the Keluo area is older than
expected based on crustal age determinations.

The temporal decoupling implies there is no direct genetic link
between the mantle and the crustal basement in eastern CAOB. A
possibility is that the old lithospheric mantle is exotic, which was
transported from elsewhere and impinged beneath the Keluo area. For
example, it has been suggested that the enriched lithospheric mantle
beneath the western Yangtze Craton, which is responsible for the
ultrapotassic rocks along the northern Ailao Shan-Red River Fault, was
extruded from the Tibetau plateau (Xu et al., 2001). Furthermore, Wu
et al. (2006) suggested that the Cenozoic mantle xenoliths with
Paleoproterozoic ages represent old mantle beneath the NE China,
which was probably extruded from the Yangtze Craton due to the
Triassic collision between North China and South China. Another
possible scenario is that younger crust was late tectonically accreted
to the older mantle in the eastern part of the CAOB. Similar
mechanisms have been proposed to explain the crust–mantle
decoupling Canadian Cordillera (Peslier et al., 2000a, 2000b). This
model raises the question as to why the lithospheric mantle was
stable through the complicated orogenic activities in eastern CAOB
since the Phanerozoic, during which the Paleo-Asian and Paleo-Pacific
Ocean were sequentially subducted.

6. Conclusion

Mantle xenoliths entrained in the Cenozoic Keluo potassic rocks
show complicated histories of melting and metasomatism. They have
been mainly metasomatized by silicate melts and locally by K-rich
hydrous melts. Although the Re–Os isotope system has been
disturbed, the Os isotope compositions of most Kelou mantle
xenoliths have not been significantly modified by metasomatic
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processes. Both TRD ages of the refractory harzburgites and the
alumochron age, constrain the formation of the sub-continental
lithospheric mantle beneath the Keluo at about 2.1 Ga. This is in
contrast to the younger model ages of the overlying crust. The old
mantle underlying this region does not represent the ancient mantle
preserved in the asthenosphere. Thus, the crust and mantle are
temporally decoupled in the eastern part of the Central Asian
Orogenic Belt (CAOB). The old mantle could be exotic and was
extruded from elsewhere, e.g., from the Yangtze Craton due to the
collision between North China and South China.

Supplementarymaterials related to this article can be found online
at doi:10.1016/j.lithos.2011.07.022.
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