Rb-Sr Geochronology of Chalcopyrite from the Chehugou Porphyry Mo-Cu Deposit (Northeast China) and Geochemical Constraints on the Origin of Hosting Granites

BO WAN,1,2,† ERNST HEGNER,2 LIANCHANG ZHANG,1 ALEXANDER ROCHOLL,3 ZHI GUANG CHEN,1 HUAYING WU,1 and FUKUN CHEN1

1 Key Laboratory of Mineral Resources, Institute of Geology and Geophysics, Chinese Academy of Sciences, PO Box 9825, Beijing, China
2 Department of Earth and Environmental Sciences, Universität München, Luisenstr. 37, München, Germany
3 Department of Earth and Environmental Sciences, Universität München, Theresienstr. 41, München, Germany

Abstract

The Chehugou porphyry Mo-Cu deposit is located ca. 300 km north of Beijing in the boundary zone between the Archean North China craton and the Neoproterozoic-Mesozoic Central Asian orogenic belt. Using hydrothermal chalcopyrite from this deposit, we are able to show for the first time that the Rb-Sr isotope system in massive, nonfractured chalcopyrite grains can provide reliable age constraints for Mo-Cu deposits. We analyzed two chalcopyrite samples from slightly different petrogenetic “environments” showing contrasting texture and deformation history. Five 2- to 5-mg fragments of a single nonfractured chalcopyrite grain containing spatially isolated inclusions of K-mica, K-feldspar, and quartz yielded an Rb-Sr isochron age of 256 ± 7 Ma (2σ including χ uncertainty). For this sample, the dense chalcopyrite “matrix” apparently inhibited diffusion of Rb and Sr after chalcopyrite crystallization, and the age should therefore reflect the time of crystallization of chalcopyrite from the Mo-Cu mineralizing fluids. The evidence for Mo-Cu mineralization during the late Permian requires a revision of the previous notion that the Chehugou deposit was formed during the Yanshanian orogeny lasting from 200 to 60 Ma.

The Mo-Cu–hosting granitoids range in composition from monzogranite to highly evolved syenogranite with high La/Yb and Sr/Y ratios. Initial εNd values of ca. –21 to –23 (Nd crustal residence times of the sources 1.9 to 2.7 Ga) indicate melting of the predominantly Archean North China craton, and a subordinate juvenile mantle-derived component. Much older U-depleted lower crustal sources for the granitoids are supported by high initial 208Pb/204Pb ratios. Lithospheric delamination and underplating of hot mantle-derived material may have facilitated crustal melting in a late orogenic to postcollision.

Introduction

In the Chaoying area of Inner Mongolia (northeast China, Fig. 1) up to 14 Mo-Cu deposits have been discovered in the last 20 years (Tang, 1990; Bureau of Geology and Mineral Resources of Inner Mongolia, BGMRIM, 1991; Hsu et al., 1991; Davis et al., 2001). In spite of their economic importance, the temporal framework of mineralization and origin of the host rocks as well as the nature of mineralizing fluids have not been investigated to date. Among these deposits, Chehugou is the largest and most representative porphyry Mo-Cu deposit (Figs. 1, 2). In this paper we document the suitability of the Rb-Sr isotope system in individual chalcopyrite grains from the Chehugou deposit for constraining the age of Mo-Cu mineralization. Using Nd and Pb isotope and geochemical data we elucidate the sources of the Mo-Cu–hosting granitoids and suggest a tectonic setting for the deposit.

Geochronological Strategy

Age determinations of ore minerals using the Rb-Sr system in mineral or fluid inclusions in sulfide minerals have been successfully carried out for almost two decades (Nakai et al., 1990; Christensen et al., 1995; Yang and Zhou, 2001; Li et al., 2008a). Most of these studies focused on sphalerite and pyrite, but to our knowledge, Rb-Sr dating of very small (<5 mg) fragments of chalcopyrite grains, as has been performed in this study, has not been attempted before. Li et al. (2008a) noted that for sulfide samples from the hydrothermal gold deposits from the Jiaodong area, China, large variations of Rb and Sr concentrations were caused by inclusions of silicate minerals, especially hydrothermal K-mica and K-feldspar. If Sr isotope equilibrium between individual mineral and/or fluid inclusions had been achieved during hydrothermal activity and isotopic exchange between them did not occur after their formation, the Rb/Sr ages should be meaningful with respect to the formation of the ore minerals and the deposit (Li et al., 2008a).

In previous studies, the very low concentrations of Rb and Sr in sphalerite and pyrite proved to be an analytical challenge so that large samples up to 100 mg had to be handpicked and chemically processed. It was realized that large samples showed a tendency for preservation of isotopic disequilibrium between mineral and fluid inclusions. This condition typically
resulted in errorchrons, making it difficult to infer geologically meaningful ages (e.g., Christensen et al., 1995). On the other hand, it has been shown earlier for pyrite that on a small sample scale, Rb-Sr isotope equilibrium has often been reached (Li et al., 2008a).

In this study we tried to avoid the potential problem of isotope disequilibrium by analyzing very small fragments of chalcopyrite grains (<5 mg), handpicked from single small and crushed chalcopyrite chips.

Geologic Framework of Study Area

The Chifeng region—comprising up to 14 Mo-Cu deposits, including the Chehugou deposit—is situated in the central part of a boundary zone between the Archean North China craton and the Neoproterozoic-Mesozoic Central Asian orogenic belt (Fig. 1). The boundary zone comprises a wide range of lithologic-tectonic units such as Precambrian continental fragments, late Paleozoic island-arc assemblages, Mesozoic continental volcanosedimentary successions, and crosscutting late Paleozoic to late Mesozoic granitoids (Tang, 1990; Davis et al., 2001; Xiao et al., 2003; Wu et al., 2005; Zhang et al., 2007, 2009). The youngest rocks with typical subduction-related characteristics are of late Carboniferous age (Zhang et al., 2007) and the oldest postcollision intraplate igneous rocks are middle to late Mesozoic (Davis et al., 2001; Wu et al., 2002; Zhang et al., 2009). This relationship suggests that the Paleo-Asian Ocean closed sometime during the late Paleozoic to early Mesozoic. The U-Pb zircon age spectrum for granitoids suggests three major igneous events lasting from 311 to 304 Ma (Zhang et al., 2007, 2009), 253 to 237 Ma (Chen et al., 2000; Davis et al., 2001), and 143 to 135 Ma (Chen et al., 2003; Li et al., 2003). Geochemical and isotopic data of the ca. 300 Ma granites support melting of juvenile subduction-related protoliths (Zhang et al., 2007, 2009), as opposed to old lower crustal sources for intraplate syenogranites of ca. 130 Ma (Chen et al., 2003; Li et al., 2003). The granites of ca. 240 to 250 Ma apparently were derived from mixed crustal sources comprising juvenile and older material (Chen et al., 2000; Davis et al., 2001).

The Chifeng region is characterized by east-striking faults that are cut by northeast-striking faults, all considered to be related to the 200 to 60 Ma Yanshanian orogeny (Bureau of Geology and Mineral Resources of Inner Mongolia, 1991).
The principal ore minerals in the Chehugou mine are molybdenite, chalcopyrite, and pyrite. Molybdenite is mostly disseminated in the host granite but there are also thin coatings of molybdenite on fractures within the host granite. The disseminated occurrence of molybdenite in the host granite supports a close genetic and temporal relationship between ore formation and intrusion and crystallization of the granite magma as has also been documented in other studies of porphyry Mo-Cu deposits (Theodore et al., 1992; Ashleman et al., 1997; Selby et al., 2000; Seedorff et al., 2005).

Chalcopyrite occurs as massive aggregates of irregular shape in fissures of quartz veins and between quartz veins. Individual chalcopyrite aggregates can be up to several centimeters long and up to 1 cm thick. No disseminated or stringer-type chalcopyrite mineralization is seen in hand specimens and thin section. Unlike the molybdenite disseminated in the host granite, the chalcopyrite is closely associated with
quartz veins, which cut through and intrude the host granite. For Rb-Sr age determinations we collected two chalcopyrite samples from two different quartz veins (locality box "a", Fig. 2). Chalcopyrite sample-1 was separated from a quartz veinlet filled with massive chalcopyrite. Under the electron microscope it shows a dense and massive matrix with clearly isolated mineral inclusions (Fig. 3A). Chalcopyrite sample-2, collected from a fractured stockwork zone, shows under the electron microscope brittle deformation characteristics with inclusions of silicate minerals concentrated along fractures. Representative semiquantitative SEM analyses of the mineral inclusions are listed in Table 1. The Si, Al, Mg, Fe, and K concentrations suggest K-mica and K-feldspar as most abundant inclusions.

Analytical Methods and Sample Preparation

Whole-rock samples

Fresh rock chips of the granitoids were ground in an agate mill and the major element oxides were analyzed on fused glass disks employing a Phillips PW 1500 X-ray fluorescence spectrometer. The precision and accuracy of the major element data as determined on the Chinese whole-rock granite standard GSR-1 (Xie et al., 1985) are ≤5 percent and ca. 5 percent (2σ), respectively (Zhou et al., 2002). The FeO concentrations were determined by titration and the loss on ignition (LOI) gravimetrically. The chemical analyses were carried out at the Institute of Geology and Geophysics of the Chinese Academy of Sciences in Beijing (IGGCAS).

Trace-element abundances were determined by ICP-MS (VG-PQII) at the IGGCAS employing the procedures of Zhou et al. (2002). The sample powders were decomposed in a mixture of distilled HF-HNO₃ in Savillex Teflon® beakers for 6 days at 120°C. The sample solution was dried and the residue dissolved in 50 ml 1 percent HNO₃ for ICP-MS analysis. Indium was used as internal standard for correction of matrix effects and instrumental drift. The procedural blank contribution for the trace elements in Table 2 is ≤446 pg and not significant considering the high concentrations of incompatible elements in the granitoids. The precision and accuracy of the data are better than 5 percent as determined on GSR-1 (Zhou et al., 2002).

Chalcopyrite and biotite samples

Single fragments of chalcopyrite of high quality, weighing 2 to 5 mg, were handpicked from a small (2×3×5 cm) and crushed chalcopyrite specimen under a binocular microscope. In order to minimize the possibility of initial isotopic disequilibrium between individual chalcopyrite grains, the size of chalcopyrite selected for handpicking was kept as small as possible. After washing the chalcopyrite grains in analytical-grade

TABLE 1. SEM Analyses of Silicate Mineral Inclusions in Chalcopyrite

<table>
<thead>
<tr>
<th>Sample</th>
<th>SiO₂</th>
<th>Al₂O₃</th>
<th>K₂O</th>
<th>MgO</th>
<th>Fe₂O₃</th>
<th>Total</th>
<th>Inferred mineral</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spot 17</td>
<td>67.13</td>
<td>17.53</td>
<td>11.85</td>
<td>2.41</td>
<td>0.31</td>
<td>99.23</td>
<td>K-feldspar</td>
</tr>
<tr>
<td>Spot 25</td>
<td>43.13</td>
<td>37.44</td>
<td>9.73</td>
<td>0.76</td>
<td>2.52</td>
<td>93.58</td>
<td>K-mica</td>
</tr>
<tr>
<td>Spot 48</td>
<td>64.82</td>
<td>18.42</td>
<td>12.36</td>
<td>2.49</td>
<td>0.18</td>
<td>98.25</td>
<td>K-feldspar</td>
</tr>
<tr>
<td>Spot 76</td>
<td>48.04</td>
<td>35.56</td>
<td>10.84</td>
<td>1.22</td>
<td>0.54</td>
<td>96.23</td>
<td>K-mica</td>
</tr>
</tbody>
</table>

1 Concentrations in wt percent

FIG. 3. Scanning electron microscope images of the two varieties of chalcopyrite samples analyzed in this study: (A) Chalcopyrite sample-1 showing isolated mineral inclusions of hydrothermal K-mica and K-feldspar in a dense matrix. (B) Chalcopyrite sample-2 showing K-mica and K-feldspar oriented and concentrated along fractures.
alcohol in an ultrasonic bath and rinsing in ultrapure water, the grains were transferred to Teflon vessels and spiked with a mixed \(^{87}\text{Rb}-^{84}\text{Sr}\) tracer solution. The samples were dissolved overnight in 0.3 ml 3\(\text{N} \) distilled H\(\text{NO}_3 \) and 0.1 ml concentrated HF at 80°C.

Single biotite crystals of ca. 0.1 mg were separated from a fresh sample of monzogranite (sample CG 31) under a binocular microscope. They were washed ultrasonically in distilled water and dried before decomposition. The biotite crystals were decomposed by the vapor digestion method in Teflon beakers placed inside a Parr vessel (Li et al., 2008b). Biotite decomposition was achieved at ca. 190°C within 48 hours. The fluorides were converted to nitrates before dissolution of the sample cake in dilute H\(\text{NO}_3 \).

Separation and purification of Rb and Sr were carried out on Teflon columns filled with ca. 0.1 ml Sr-Spec\(^0\) resin according to the method of Horwitz et al. (1992). Additional information about these microanalytical procedures is reported in Li et al. (2008a). The Sr fraction was loaded on a W filament with TaF\(_5\) as ion emitter. The isotopic ratios of Rb and Sr were determined on an IsoProbe-T mass spectrometer at IGGCAS. Thermal-mass fractionation of Sr isotopes was corrected with the power law and a \(^{86}\text{Sr}/^{88}\text{Sr}\) ratio of 0.1194. Rb isotope ratios were corrected for thermal-mass fractionation using an empirically determined value of 0.3 percent per a.m.u. In the course of this study, analysis of as little as 200 pg of the NIST-987 Sr reference material yielded \(^{87}\text{Sr}/^{86}\text{Sr} = 0.710250 \pm 31\) (2\(\sigma \), \(N = 6 \)). The total procedural blanks for Rb and Sr were 4 \(\pm 1 \) pg and 6 \(\pm 1 \) pg (\(N = 6 \)), respectively. These blank values are about two orders of magnitude lower than those achieved with conventional large column procedures and are not significant for the low-level Rb and Sr samples of this study.
data-regression analysis for age calculations was performed with ISOPLOT (Ludwig, 2001). The 87Rb decay constant employed is $1.42 \times 10^{-11}a^{-1}$ (Steiger and Jäger, 1977). For the biotite data-regression analysis, we used an error correlation of 0.76 as recommended by Brooks et al. (1972), and input errors are 1.5 percent (σ_2) for 87Rb/86Sr ratios, 0.01 percent (σ_2) for 87Sr/86Sr ratios. The same uncertainties were used for the chalcopyrite data-regression analysis.

The separation of Sr, Nd, and Pb from the granite samples followed the procedures of Chen et al. (2007). The isotopic compositions of these elements were measured on a Finnigan MAT-262 mass spectrometer at IGCCAS. Thermal mass fractionation of Sr and Nd isotopes was corrected with a power law and 86Sr/88Sr = 0.1194 and 146Nd/144Nd = 0.7219, respectively. Analyses of the NIST-987 reference material yielded 87Sr/86Sr = 0.71025 ± 0.00001 (N = 8, σ_2). Five analyses of the reference material NIST-981 yielded 208Pb/204Pb = 16.916 ± 0.009 (σ_2), 207Pb/204Pb = 15.461 ± 0.010 (σ_2), 206Pb/204Pb = 36.616 ± 0.012 (σ_2). The measured Pb isotope ratios were corrected for thermal mass fractionation using a value of 0.1 percent per a.m.u. The total procedure blanks of ca. 1 ng for Sr, Nd, and Pb are not significant for the whole-rock compositions.

Mineral inclusions

The mineral inclusions in chalcopyrite were semi-quantitatively analyzed with a Zeiss DSM 960A SEM equipped with an energy dispersive X-ray analysis system at the Department of Earth and Environmental Sciences, Universität München.

Results

$^{Rb-Sr}$ mineral chronology

The Rb-Sr isotope data of the chalcopyrite samples and biotite crystals are listed in Table 3 and plotted in isochron diagrams in Fig. 4. The Rb and Sr concentrations in the chalcopyrite grains show very large differences resulting in Rb/Sr ratios varying by a factor of over 300. The Rb concentrations are overall low and vary by a factor of 350 from 0.01 to 3.5 ppm; Sr concentrations range from 3.4 to 38 ppm. These lithophile element concentrations reflect primarily the abundance and composition of K-mica and K-feldspar inclusions and possibly subordinate, but not optically observed in this study, fluid inclusions in the chalcopyrite which typically does not incorporate lithophile elements in its lattice. All seven grains analyzed of chalcopyrite sample-1 (i.e., the sample showing no obvious deformation features) yielded a data trend with a slope that corresponds to an age of 255 ± 37 Ma (σ_2, Fig. 4A). Two data points plot off the common, well-defined data trend so that the regression analysis yields a high MSWD of 31. We suggest that these two chalcopyrite fragments either preserved initial isotopic heterogeneity among silicate minerals or contain isotopically heterogeneous fluid inclusions. Excluding these two analyses (chalcopyrite samples F2 and F6, Table 3, Fig. 4A), the data regression analysis yields a nearly identical but more precise isochron age of 256 ± 6 Ma (σ_2, MSWD = 0.3).

The 87Rb decay constant (λ 87Rb) we have used is $1.42 \times 10^{-11}a^{-1}$ (Steiger and Jäger, 1977), and it has ca. 1.5 percent uncertainty as suggested by, for example, Minster et al. (1982). Including this uncertainty the Rb-Sr isochron age is 256 ± 7 Ma (σ_2). A Re-Os age of 258 ± 3 Ma (σ_2, λ 187Re = 1.666 × $10^{-11}a^{-1}$) for a molybdenite sample from the same deposit was obtained by J. Liu (pers. commun., 2007). Taking an uncertainty of λ 187Re of 1.02 percent into account (Smoliar et al., 1996), the Re-Os isochron age becomes 258 ± 4 Ma (σ_2). Thus, including the uncertainties of the decay constants does not change the fact that our chalcopyrite Rb-Sr age is, within error limits, indistinguishable from the Re-Os age. The good agreement of the Rb-Sr and Re-Os ages lends strong support to the assumption that the Rb-Sr isotopic system in small-grain chalcopyrite samples can be used to determine meaningful ages for chalcopyrite crystallization.

Seven chalcopyrite grains separated from a second, slightly deformed—that is, fractured—specimen (sample-2, Table 3) collected only a few meters away from chalcopyrite sample-1 yielded a much younger age of 207 ± 15 Ma (σ_2, MSWD = 14, Fig. 4B). Actually we also realized that rejection of two points would improve the age uncertainty. Doing so yields 205 ± 12 Ma (σ_2, MSWD = 4), which is very similar to the result of the seven-point data regression, although the uncertainty has been reduced. However, we preferred the larger age uncertainty as reasonable because the chalcopyrite sample-2 represented a prolonged open system as can be inferred from Figure 3, showing fractures and linearly oriented and connected mineral inclusions. The much younger age and high MSWD value for the fractured chalcopyrite sample support an open-system behavior of the Rb-Sr system as discussed below.
The Rb-Sr data of seven single biotite crystals and the whole-rock sample of hosting monzogranite CG 31 yielded an apparent age of 249 ± 2 Ma (2σ, MSWD = 1.6, Fig. 4C). The initial 87Sr/86Sr ratio of 0.7089 is similar to that of the mineral inclusions in the chalcopyrite samples. A similar isochron age of 244 ± 4 Ma (2σ, MSWD = 0.9) for the seven biotite data points alone (i.e., without the whole-rock data) corroborates our interpretation of the whole-rock biotite age as the time of cooling of the granite below ca. 300° to 400°C (see review of Willigers et al., 2004). A plot of 87Sr/86Sr vs. 1/86Sr reveals for the whole-rock and biotite data two trends with biotite sample fraction C2 as a common endmember (Fig. 4D). The samples plotting along the trend “b,” including the whole-rock sample, yielded an age of 250 ± 2 Ma (2σ, MSWD = 1.6, initial 87Sr/86Sr = 0.70890 ± 6). The data trend “a” is based on biotite analyses alone and the samples plotting along this trend yielded an age of 244 ± 7 Ma (2σ, MSWD = 1.2, initial 87Sr/86Sr = 0.713 ± 6), which is indistinguishable within error limits from the 250 Ma whole-rock–biotite age and the 249 ± 2 Ma cooling age based on all data points.

Major- and trace-element data of the Mo-Cu hosting granites

The chemical compositions of the ore-hosting granites at Chehugou mine are listed in Table 2 and plotted in Figs. 5 and 6. The normative quartz and feldspar proportions derived from the CIPW-norm show a spectrum of rock types including monzogranite and more alkalic syenogranite. These rock compositions suggest rifting environments in orogens, collisional to post-collisional settings, rather than arc-settings (Fig. 5A). The SiO2 concentrations of ca. 69 to 75 wt percent indicate highly evolved rock compositions distinct from typical intermediate subduction-related igneous rocks. According to the molar ratios of Al/Ca, Na, and K, the granites have transitional I- to S-type affinities with a sedimentary component reflected in their peraluminous composition (Fig. 5B).

The granites show high La/Yb ratios up to 60, high Sr/Y ratios up to 190 and low Yb concentrations <0.9 ppm. These data together with the REE pattern (Fig. 6, discussed below) indicate garnet and amphibole as residual phases during partial melting or as liquidus phases during fractional magma crystallization. The features were originally interpreted as due to melting of subducted oceanic crust (Defant and Drummond, 1990), but there is increasing evidence that melting of lower crust can also explain such trace-element characteristics (Rapp et al., 1999; Xu et al., 2002; Gao et al., 2004). For the granites of this study, the radiogenic isotopes indicate melting of old and lower continental crust.
The normalized trace-element patterns are indistinguishable for the syenogranite and monzogranite samples (Fig. 6). All samples show a crustal signature including a positive Pb and negative Nb anomalies and enrichment of Sr relative to Nd and Pr. The HREE patterns in most samples are concave, suggesting fractionation and/or residual amphibole with high distribution coefficients for the intermediate HREE (Bottazzi et al., 1999). Eu/Eu* ratios of 0.96 to 1.5 indicate absence of or slightly positive Eu anomalies in the samples, consistent with melt evolution in the deep crust and minor accumulation of feldspar.

Sr, Nd, and Pb isotope compositions of the granites

The Sr-Nd isotope compositions of granites are listed in the Table 4 and plotted in Fig. 7. Initial ratios were calculated for an inferred age of 260 Ma. The monzogranite samples have initial 87Sr/86Sr ratios of ca. 0.7087 to 0.7089 and uniform $\varepsilon_{Nd}^{(t)}$ values of –20.6 to –20.8. The syenogranites have slightly
more enriched isotopic signatures and suggest crustal sources, as indicated by initial $^{87}\text{Sr} / ^{86}\text{Sr}$ ratios of ca. 0.7090 to 0.7121 and uniform $\varepsilon_{\text{Nd}}(t)$ values of –22.3 to –22.9. The average crustal residence time of the source material of the granites is 1.9 to 2.2 Ga (Fig. 7; DePaolo, 1981). The initial Nd isotope ratios of the granitoids plot above the isotope evolution trend of typical Archean North China craton, consistent with crustal sources comprising a small amount of a juvenile mantle-derived component. There is good agreement with the composition of lower crustal granulite-facies xenoliths sampled by ca. 140 Ma old volcanism (see references in Fig. 7).

The Pb isotope compositions of the samples are listed in Table 5 and plotted in Fig. 8. Syeno- and monzogranite samples have indistinguishable Pb compositions, dominated by a Neoproterozoic crustal component (Zartman and Doe, 1981). The high 208Pb/204Pb ratios relative to 206Pb/204Pb indicate crustal sources with a long-term evolution with a high Th/U ratio probably due to loss of U as has been suggested for granulite-facies metamorphism of the lower crust (e.g., DePaolo et al., 1982; Rudnick et al., 1985). The corresponding 207Pb/204Pb ratios are higher than the model lower crustal composition and indicate the presence of material that evolved with a high 235U/204Pb ratio, as can be assumed for Archean upper crust. A subordinate juvenile mantle-derived component as suggested by Nd isotopes will not be obvious in the Pb isotopes, as the Pb isotopes in the samples will reflect the crustal components owing to the much higher Pb concentration in crust than in a mantle-derived basalt.

Discussion

Ages of the Mo-Cu mineralization and hosting granites

The Rb-Sr isotope data for minute single fragments of chalcopyrite separated from a massive hand specimen (chalcopyrite sample 1) provide a robust isochron age of 256 ± 7 Ma (2σ, including λ uncertainty, MSWD = 0.3). The excellent agreement of this datum with that derived from a 7-data point errorchron of 255 ± 37 Ma as well as an Re-Os age of 258 ± 3 Ma for molybdenite from the same mine (J. Liu, pers. commun., 2007) corroborates the geologic significance of the Rb-Sr chalcopyrite age of this study.
As outlined above, the chalcopyrite age is, strictly speaking, the time of incorporation into the chalcopyrite grain and diffusive isolation of isotopically similar or equilibrated hydrothermal silicate minerals, in this case predominantly K-mica and K-feldspar, by chalcopyrite precipitation from Mo-Cu rich hydrothermal fluids, in a slowly cooling granite body. The fact that the data plot along a nearly perfect isochron implies (1) the enclosed hydrothermal mineral phases in each chalcopyrite fragment had, at time of isolation, an identical isotopic composition and (2) that the silicate minerals became thereafter isolated (closed-system isotopic evolution) to evolve to their present isotope composition. The first implication reflects the open-system behavior of the whole-rock sample during hydrothermal activity, allowing for isotopic exchange both between the different silicate phases and between silicates and fluid. The second implication indicates that the open-system conditions were terminated due to sealing of the inclusions by the crystallizing chalcopyrite. Therefore, the calculated age refers to the crystallization of the chalcopyrite and thus to the mineralization process itself.

Both the agreement of the Rb-Sr chalcopyrite age with the Re-Os molybdenite age and the isochron relationship for five out of seven chalcopyrite fragments further support our assumption that the chalcopyrite grains had reached a high degree of initial isotopic homogeneity and evolved thereafter in a closed system, all prerequisites for a reliable age determination. This prerequisite for a meaningful age determination can be accomplished by isotopic exchange among the hydrothermal minerals in contact with hot 800° to 350°C (Barton, 2000; Seedorff et al., 2005) Mo-Cu rich hydrothermal fluids. The observation that the sample grains of chalcopyrite-1 are characterized by a dense, nonfractured matrix and interspersed isolated hydrothermal mineral inclusions is good evidence to propose 256 Ma as the mean age of the formation of chalcopyrite mineralization. Taking into account that the geochemically very different Re-Os system in molybdenite (crystallization temperature >440°C, Selby and Creaser, 2001) yielded, within error limits, an identical age of 258 ± 3 Ma strengthens our conclusion that the Rb-Sr chalcopyrite age does, indeed, reflect the ore-forming process.

Thus, we propose that the Rb-Sr system in chalcopyrite grains from small isotopically equilibrated samples is an additional geologic chronometer to constrain the time of Mo-Cu mineralizations. In order to bracket the entire duration of the Mo-Cu mineralization in the Chehugou mining district, additional age determinations with both the Rb-Sr and Re-Os and, especially, the U-Pb-zircon chronometers are required. With the data at hand we suggest ca. 256 Ma as the mean age of

Table 5. Pb Isotope Compositions of the Mo-Cu Hosting Granites

<table>
<thead>
<tr>
<th>Sample no.</th>
<th>(^{206}\text{Pb}/^{204}\text{Pb}_m)</th>
<th>(^{207}\text{Pb}/^{204}\text{Pb}_m)</th>
<th>(^{208}\text{Pb}/^{204}\text{Pb}_m)</th>
<th>(^{206}\text{Pb}/^{204}\text{Pb}_t)</th>
<th>(^{235}\text{U}/^{204}\text{Pb})</th>
<th>(^{232}\text{Th}/^{204}\text{Pb})</th>
<th>(^{207}\text{Pb}/^{204}\text{Pb}_t)</th>
<th>(^{208}\text{Pb}/^{204}\text{Pb}_t)</th>
<th>(^{206}\text{Pb}/^{204}\text{Pb}_t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syenogranite</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CG11</td>
<td>16.704 ± 7</td>
<td>15.368 ± 7</td>
<td>37.777 ± 6</td>
<td>0.014</td>
<td>29.5</td>
<td>16.62</td>
<td>15.36</td>
<td>37.40</td>
<td></td>
</tr>
<tr>
<td>CG12</td>
<td>16.650 ± 8</td>
<td>15.434 ± 9</td>
<td>37.967 ± 8</td>
<td>0.012</td>
<td>13.7</td>
<td>16.38</td>
<td>15.43</td>
<td>37.79</td>
<td></td>
</tr>
<tr>
<td>CG13</td>
<td>16.868 ± 8</td>
<td>15.412 ± 8</td>
<td>37.915 ± 8</td>
<td>0.002</td>
<td>16.8</td>
<td>16.68</td>
<td>15.40</td>
<td>37.70</td>
<td></td>
</tr>
<tr>
<td>CG14</td>
<td>16.592 ± 6</td>
<td>15.385 ± 6</td>
<td>37.621 ± 7</td>
<td>0.0092</td>
<td>14.4</td>
<td>16.54</td>
<td>15.38</td>
<td>37.44</td>
<td></td>
</tr>
<tr>
<td>Monzogranite</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CG31</td>
<td>16.578 ± 7</td>
<td>15.418 ± 9</td>
<td>38.167 ± 8</td>
<td>0.012</td>
<td>20.9</td>
<td>16.51</td>
<td>15.41</td>
<td>37.90</td>
<td></td>
</tr>
<tr>
<td>CG32</td>
<td>16.992 ± 7</td>
<td>15.411 ± 8</td>
<td>37.762 ± 8</td>
<td>0.053</td>
<td>31.7</td>
<td>16.69</td>
<td>15.40</td>
<td>37.35</td>
<td></td>
</tr>
<tr>
<td>CG33</td>
<td>16.857 ± 9</td>
<td>15.406 ± 9</td>
<td>37.751 ± 9</td>
<td>0.031</td>
<td>27.9</td>
<td>16.68</td>
<td>15.39</td>
<td>37.39</td>
<td></td>
</tr>
<tr>
<td>CG34</td>
<td>16.635 ± 8</td>
<td>15.391 ± 9</td>
<td>37.712 ± 9</td>
<td>0.020</td>
<td>22.9</td>
<td>16.52</td>
<td>15.39</td>
<td>37.42</td>
<td></td>
</tr>
</tbody>
</table>

Notes: m. = measured ratios, t = initial ratios for an age of 260 Ma; errors are 2σ, and refer to the last digits; U, Th/Pb isotope ratios calculated with concentration data of Table 1.

FIG. 8. Initial Pb isotope compositions of the Chehugou granites. Shown are model isotopic evolution curves for Pb in mantle and crustal reservoirs (Zartman and Doe, 1981). The ticks on the curves indicate age intervals in Ga. High \(^{206}\text{Pb}/^{204}\text{Pb}\)/\(^{207}\text{Pb}/^{204}\text{Pb}\) ratios relative to the \(^{206}\text{Pb}/^{204}\text{Pb}\)/\(^{208}\text{Pb}/^{204}\text{Pb}\) ratios indicate crustal sources with a long-term evolution with a high Th/U ratio as inferred for granulite-facies lower crust (e.g., DePaolo et al., 1982; Rudnick et al., 1985). \(^{207}\text{Pb}/^{204}\text{Pb}\) ratios plotting above the lower crust curve consistent with presence of subordinate amounts of ancient upper crustal material in the inferred lower crustal granite source.
major Mo-Cu mineralization at the Chehugou mine and an extended time span of ca. 250 to 260 Ma when including the errors of the different methods and associated errors. This finding strongly indicates that the Mo-Cu mineralization is related to the closure of the Paleo-Asian Ocean rather than the Yanshanian orogeny lasting from 160 to 60 Ma, as previously had been assumed (BGMRIM, 1991).

The surprisingly young age of ca. 207 Ma for chalcopyrite sample-2 is interpreted as related to rock deformation during crystallization of the chalcopyrite and prolonged diffusion of Rb and Sr along grain boundaries and fractures. The evidence for fractures and linearly oriented and connected mineral inclusions in SEM photos (Fig. 3) underlines the assumption that the chalcopyrite sample was prone to open-system behavior and isotopic reequilibration among the hydrothermal minerals by circulating fluids. Indeed, it has been shown that elemental diffusion at grain boundaries and cracks is efficient at temperatures much lower than assumed for intracrystalline volume diffusion (Kaur et al., 1995), and we suggest that at ca. 207 Ma, hydrothermal activity and fluid circulation had ceased at Chehugou and/or that temperatures were too low to for diffusive exchange. This finding leads to the economically important conclusion that the Yanshanian orogeny had no major tectonothermal effect on the rocks in the Chehugou region.

Regarding the magmatic age of the Mo-Cu–hosting granites, the Rb-Sr chalcopyrite and Re-Os molybdenite ages of ca. 250 to 260 Ma provide good evidence that emplacement of the hosting granites occurred not much earlier than ca. 260 Ma. The biotite data suggest that the granite cooled below 300°C to 400°C (see review of data in Willigers et al., 2004), at ca. 249 Ma, about 10 m.y. after crystallization of molybdenite and chalcopyrite. The biotite cooling age of 249 Ma can also be interpreted as a lower age limit for the Mo-Cu mineralization.

We assessed whether or not two-component mixing can explain the linear alignment of data points (Faure, 1986; Fig. 4D). The trend “b” may be explained by the presence of other whole-rock components (e.g., magmatic inclusions, such as feldspar) in the two biotite samples with intermediate composition, whereas biotite sample C2 may represent a pure end-member composition. The age of 250 ± 2 Ma derived from this trend is meaningful with respect to cooling of the granite. The data trend “a” is based on biotite analyses alone and we prefer to explain it by variable overprinting of biotite grains such as C2 with a Sr-rich hydrothermal fluid isotopically not much different from the whole rock. Variable degrees of biotite overprinting by a fluid can be concluded as all data points are well correlated. The age of 244 ± 7 Ma derived from trend “a” is indistinguishable within error limits from the 250 Ma whole rock-biotite age (trend “b”) and the 249 ± 2 Ma cooling age based on all data points. This underlines the fact that all mixing components and mixtures were isotopically identical or similar at the time of closure of the Rb-Sr system, and that the mixing trends discussed above must have age significance with respect to cooling of the granite below the closure temperature of biotite at ca. 250 Ma.

Sources of the Mo-Cu host granites and mineralizing fluids

The Chehugou ore deposit is a typical porphyry-type deposit and constraints on its origin will shed light on the nature of the Mo-Cu-bearing hydrothermal fluids in general. Although both types of host granites were derived from similar lower crustal sources as indicated by Sr, Nd, and Pb isotopes, the economically important mineralization is confined to the chemically more evolved syenogranite rather than the less evolved monzogranite. The major element data in Table 2 show that the syenogranite represents a highly differentiated residual granitoid magma, whereas the almost barren monzogranite is chemically much less fractionated. This relationship suggests that major Mo-Cu mineralization in the Chehugou region resulted from the enrichment of Mo and Cu in a fluid phase separating from a granitic melt in the course of extensive crystal magma fractionation.

The overall agreement between the initial $^{87}\text{Sr}/^{86}\text{Sr}$ ratio of 0.7093 in the chalcopyrite samples and a mean initial $^{87}\text{Sr}/^{86}\text{Sr}$ ratio of 0.7097 in the granites strongly supports derivation of the Mo-Cu hydrothermal fluids from ultimately the same crustal source. The Nd isotope data indicate melting of predominantly Archean crustal sources with a mean residence time of ca. 2 Ga, probably including a minor juvenile mantle-derived component. The high $^{208}\text{Pb}/^{204}\text{Pb}$ ratios are consistent with lower crustal sources that underwent granite-facies metamorphism and concomitant U-loss and elevation of Th/U long before crustal melting. Elevated initial $^{206}\text{Pb}/^{204}\text{Pb}$ ratios indicate additional presence of an Archean upper crustal component that evolved with a high $^{235}\text{U}/^{204}\text{Pb}$ ratio. As strongly supported by the similar Sr-Nd isotopes in granulite xenoliths from the northern North China craton and the granitoids of this study (Fig. 7), partly rejuvenated lower Archean crust has also been sampled by the ca. 140 m.y. old volcanism at the northern North China craton (Fig. 7; Zhou et al., 2002; Zheng et al., 2004; Jiang et al., 2007). During the Paleozoic-Mesozoic, the northern North China craton constituted an Andean-type continental margin (Wu et al., 2002) undergoing melting and rejuvenation by input of juvenile mantle-derived material. Lower crustal melting and formation of granitoids at ca. 260 Ma was probably also facilitated by input of juvenile mantle-derived magmas, although the isotope data of the granitoids indicate melting of predominantly Archean crust.

Implications for the closure of the Paleo-Asian Ocean

The evidence for a predominantly lower crustal origin of the Mo-Cu-bearing granites at the Chehugou mine may add to the discussion of evidence about the temporal framework of the closure of the Paleo-Asian Ocean. In light of the evidence for melting of predominantly older continental crust, we suggest that lithospheric delamination may be the reason for underplating and melting of the lower crust by hot basaltic magmas (Hanson and Kroner, 1981; Herzberg et al., 1983; Atherton and Petford, 1993). Dehydration melting of mafic lower crust can account for the transitional arc to intraplate affinity of the granitoids with compositions that agree with felsic magmas produced by dehydration melting of lower crustal compositions (Rapp et al., 1999). Extensive mantle melting and crustal magma underplating in orogenic belts leads to overthickened crust (Bird, 1978; Housman et al., 1981; Nelson, 1992) prone to delamination. The crust at northern margin of the craton must have been overthickened because it constituted an active continental margin since
Conclusions

Rb and Sr isotopes in small fragments of chalcopyrite document for the first time the suitability of the Rb-Sr method for constraining the time of chalcopyrite crystallization. Rb-Sr chalcopyrite ages constrain the mineralization at the Chehuogou porphyry Mo-Cu deposit at ca. 256 Ma, indicating that the deposit predates processes related to the Yanshanian orogeny. Rb-Sr biotite ages for a monzogranite sample interpreted as a lower age limit for the Mo-Cu mineralization. The emplacement age of the Mo-Cu hosting granitoids is probably not much older than ca. 260 Ma, as can be inferred from the age spectrum of the associated ore minerals.

The radiogenic isotope characteristics of the granites indicate a principal origin from Archean lower crust. Lithospheric delamination may have facilitated crustal melting in late orogenic to postcollision setting. Closure of the Paleo-Asian Ocean may have occurred before 260 Ma, possibly during the middle Permian.

Acknowledgments

This work was supported by National Basic Research Program of China (Grant 2006CB403506, to L. Zhang). B. Wan thanks X. Li and P. Xiao for help with the mass spectrometric measurements and F. Söllner for instructions on the SEM. The paper was written during a visit of B. Wan to Munich University financed by the LMU-China Scholarship Council Program. Reviews by Bruce Eglington and an anonymous reviewer helped to improve this manuscript.

July 9, 2008; March 20, 2009

REFERENCES

