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The retrieval of the backscatter cross section in lidar data is of great interest in remote sensing. For the nu-
merical calculation of the backscatter cross section, a deconvolution has to be performed; its determination is
therefore an ill-posed problem. Most of the common techniques, such as the well-known method of Gaussian
decomposition, make implicit assumptions on both the emitted laser pulse and the scatterers. It is well under-
stood that a land surface is quite complicated, and in many cases it cannot be composed of pure Gaussian
function combinations. Therefore the assumption of Gaussian decomposition of waveforms may be invalid
sometimes. In such cases an inversion method might be a natural choice. We propose a regularizing method
with a posteriori choice of the regularizing parameter for solving the problem. The proposed method can alle-
viate difficulties in numerical computation and can suppress the propagation of noise. Numerical evidence is
given of the success of the approach presented for recovering the backscatter cross section in lidar data.
© 2009 Optical Society of America
OCIS codes: 100.1830, 140.3538, 280.3640, 100.3190.
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. INTRODUCTION
irborne laser scanning (ALS) is an active remote sensing

echnique that is also often referred to as lidar or laser ra-
ar. As a result of the increasing availability of sensors,
LS has been receiving increasing attention in recent
ears (e.g., see [1–4]). In ALS a laser emits short infrared
ulses toward the Earth’s surface, and a photodiode
ecords the backscattered echo. With each scan, measure-
ents are taken of the round trip time of the laser pulse,

he received echo power, and the beam angle in the loca-
or’s coordinate system. The round-trip time of the laser
ulse allows calculating the range (distance) between the
aser scanner and the object that generated the backscat-
ered echo. Thereby, information about the geometric
tructure of the Earth’s surface is obtained. The received
ower provides information about the scattering proper-
ies of the targets that can be exploited for object classifi-
ation and for modeling of the scattering properties.

The latest generation of ALS systems not only records a
iscrete number of echoes but also digitizes the whole
aveform of the reference pulse and the backscattered
choes. In this way, besides the range, further echo pa-
ameters can be determined. The retrieval of the back-
catter cross section is of great interest in full-waveform
LS. Since it is calculated by deconvolution, its determi-
ation is an ill-posed problem in a general sense. So far,
ost of the developed methods are based on the implicit

ssumption of Gaussian scatterers, i.e., the cross section
rofile in the time domain can be represented by a sum of
aussian functions, whereby each echo represents a clus-
1084-7529/09/051071-9/$15.00 © 2
er of scatterers situated too closely to be resolved by the
ange resolution of the ALS system (see [3]). However,
iven the complex form and reflectivity properties of
atural and man-made objects and considering intensity
ariations of the laser beam over its footprint, one has to
xpect that this assumption is, in a strict sense, often not
orrect.

On the other hand, determination of the scattering
ross section from the observed waveform is an inherently
ll-posed problem, i.e., we cannot hope to obtain a unique
olution unless we impose additional constraints based on
priori knowledge or assumptions (see [5]). However, the

ncorporation of constraints is not a trivial task; they may
ome from several sources, historically, empirically, or
uantitatively (see [6]). For the backscatter cross section
n lidar data, quantitative information can be gained by
ssuming the scaled backscatter cross section is upper
ounded. More specifically, we present in Subsection 3.B a
athematical model that incorporates constraints to the

ackscatter cross section, and we solve a L2 norm problem
ith Sobolev norm function as a constraint. This formu-

ation solves many types of ill-posed inverse problems,
nd it is a basis for the inversion theory (see [7]).
The rest of the paper is organized as follows. In Section

, we recall the modeling of laser scanning signals and
he derivation of the convolution system. In Section 3, we
ropose a regularization method for determination of the
ross section; issues of deconvolution and ill-posed nature
f the inverse problem, regularization model, and regular-
zation techniques are discussed in Subsections 3.A–3.D,
009 Optical Society of America
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espectively. In Section 4, we present numerical results to
onfirm our assertion. Some concluding remarks are
iven in Section 5. Finally, we supply appendices for some
omputational procedures.

Throughout the paper we use the following notation:
ª” denotes “defined as;” “x” denotes the discretization of

function x, “min” denotes “minimizing” a functional,
A*” denotes the adjoint of an operator A, “AT” denotes the
ranspose of a matrix A, and “s.t.” denotes “subject to.”

. MODELING OF LASER SCANNING
IGNALS
LS utilizes a measurement principle strongly related to
adar remote sensing. The fundamental relation to ex-
lain the signal strength in both techniques is the radar
quation (see [3]):

Pr�t� =
Dr

2

4�R4�t
2Pt�t −

2R

vg
��, �1�

here t is the time, R is the range, Dr is the aperture di-
meter of the receiver optics, �t is the transmitter beam
idth, Pt is the transmitted power of the laser, and � de-
otes the scattering cross section. The time delay is equal
o t�=2R /vg, where vg is the group velocity of the laser
ulse in the atmosphere.
Taking the occurrence of multiple scatterers into ac-

ount and considering the receiver impulse response ��t�
f the system’s receiver, for N distinct targets within the
ravel path of the laser pulse, we get [3]

Pr�t� = �
i=1

N Dr
2

4�Ri
4�t

2Pt�t���i��t����t�, �2�

here � denotes the convolution operator, and �i��t� is the
ifferential backscatter cross section at the mean range
osition Ri. Since convolution is commutative, we can set
t�t���i��t����t�=Pt�t����t���i��t�= f�t���i��t�, i.e., it is pos-
ible to combine both the transmitter and the receiver
haracteristics into a single term f�t�. This term is re-
erred to as the system waveform of the laser scanner (see
3]). For simplifying notation, we define g�t�
�i=1

N Ri
−4�i��t� and h�t�=4��t

2 /Dr
2Pr�t�. Thus, we are able

o write our problem in the form

h�t� = �f�g��t�, �3�

here h is the incoming signal recorded by the receiver, f
enotes a mapping that specifies the kernel function or
oint-spread function, and g is the unknown cross section.

. REGULARIZATION METHOD FOR
ETERMINATION OF THE CROSS SECTION
. Deconvolution
he received pulse consists of an effective wave heff�t� and
n additive noise n�t�:

h�t� = heff�t� + n�t�.

herefore, it is quite important to stably retrieve the
ross section from Eq. (3) and suppress the perturbation
imultaneously. We may write h �t� in the form
eff
f�geff = heff, �4�

here geff denotes the actual backscatter cross section.
Now the problem is how to deconvolve the convolution

q. (3) to get the approximation to the actual cross section
eff. If we can identify an operator that is the inverse of
�t�, then geff�t� can be obtained directly. Though this is
erfect in theory, this approach may not work well in
ractice. Numerically, the inverse of f�t� is hard to obtain.
Let us rewrite problem (3) into the abstract operator

orm,

Fg = h, �5�

here F :G→H is a mapping and g�G, h�H. Both G
nd H can be considered to be Hilbert spaces. Because of
he intrinsic ill-posedness of the problem, a large jump oc-
urs for F−1n, so to F−1h. For noninvertible operator K, a
east-squares error method may be applied that solves a
esidual minimization problem:

�Fg − h�2 → min. �6�

owever the solution

g̃ = �
k

�h,vk�

�k
uk = �

k
� �heff,vk�

�k
uk +

�n,vk�

�k
uk�

s unstable for ill-posed problems (a poor approximation
o geff), since �n ,vk� /�k may be astonishingly large for ran-
om noise n [8], where 	�k ;uk ,vk
 is the singular system
f F.

. Regularization
t is natural to require error between the observed and
he true land-surface signal to be as small as possible, i.e.,
he energy of noise to be minimal,

�n� → min.

ere �·� is the norm in any form. However, due to the ill-
osed nature of deconvolution, the above problem is un-
table. Therefore introducing a regularization technique
s necessary.

For effective inversion of the ill-posed linear operator
quation, we must impose an a priori constraint on the in-
erested parameters. This leads to solving a constrained
east-squares error problem,

min J�g� ª �Fg − h�2, �7�

s.t. c�g� � �, �8�

here c�g� is the constraint to the solution g, and � is a
onstant that specifies the upper bound of c�g�. Usually,
�g� is chosen as the norm of g with different scale. If the
arameter g comes from a smooth function, then c�g� can
e chosen as a smooth function; otherwise, c�g� can be
onsmooth. A generically used constraint is the smooth-
ess. It assumes that physical properties in a neighbor-
ood of space or in an interval of time present some co-
erence and generally do not change abruptly. Practically,
e can always find regularities of a physical phenomenon
ith respect to certain properties over a short period of

ime. The smoothness a priori has been one of the most
opular assumptions in applications.
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The general framework for fulfilling the above require-
ent is the so-called regularization. We consider a ca-

onical regularization model (see [7])

min�Fg − h�L2

2 + ���g�, �9�

here ��·� is a function whose role is to give some penal-
zation to the unknown cross section g, and ��0 is the
egularization parameter. Here, the L2 space is defined as
he set of functions that is square-integrable, i.e., L2�	�

	g�t� :	�g�t��2dt
�
.

. Choosing the Weighting Factor Matrix
o ensure the convexity of the optimized problem (9), it is
ecessary to choose the appropriate regularization pa-
ameter � and the penalty function ��g�. Usually, ��g� is
hosen as a quadratic form ��g�= �Lg ,g�. There are sev-
ral ways for choosing the matrix L. A simple way is
hoosing the L as the identity, i.e., the weight imposed on
ach element is identical. However it is reported in [6]
nd [9] that the choice of ��g� as a Sobolev norm function
f the form ��g�= �g�W1,2

2 has a better conditioning state
han others. Here the Sobolev W1,2 space is defined as the
et of functions that is continuous and differentiable with
he bounded norms of itself and its generalized deriva-
ives in L2, i.e., W1,2�	�ª 	g�t� :g�t��C�	� ,g�t�
L2�	� ,dg /dt�L2�	� ,	�g2+�i=1

n �dg /dti�2�dt1dt2 . . .dtn
�
, where C�	� denotes the continuous space. The inner

roduct of two functions g1��� and g2��� in W1,2 space is
efined by

�g1���,g2����W1,2 ª�
	

�g1���g2���

+ �
i,j=1

n �g1

��i

�g2

��j
�d�1d�2 . . . d�n, �10�

here 	 is the assigned interval of the definition.
Assume that the variation of g��� is flat near the bound-

ry of the integral interval 	. In this case, the derivatives
f g are zero at the boundary of 	. Let st be the step size
f the grids in 	, then after discretization of ��g�, L is a
ridiagonal matrix in the form

L = �
1 +

1

st
2 −

1

st
2

0 ¯ 0

−
1

st
2 1 +

2

st
2 −

1

st
2

¯ 0

] � � � ]

0 ¯ −
1

st
2 1 +

2

st
2 −

1

st
2

0 ¯ 0 −
1

st
2 1 +

1

st
2

� .

n our numerical experiment, the step size st is 1.

. Choosing the Regularization Parameter
hoosing the regularization parameter � is also an impor-

ant issue. A priori choice of the parameter � requires 0
�
1. However the a priori choice of the parameter does
ot reflect the degree of approximation that may lead to
ither overestimation or underestimation of the regular-
zer. It is well known that the a posteriori parameter
hoice rule can yield better recoveries. We adopt a widely
sed discrepancy principle (see [7]).
In fact, the optimal parameter �* is a root of the non-

inear function

��� = �Fg� − h�2 − �2, �11�

here � is the error level to specify the approximate de-
ree of the observation relative to the true noiseless data.
oting ��� is differentiable, fast algorithms for solving

he optimal parameter �* can be implemented. In this pa-
er we will use the cubic convergent algorithm developed
n [10]:

�k+1 = �k −
2��k�

���k� + ����k�2 − 2�2�k����k��1/2 . �12�

n the above cubic convergent algorithm, the functions
���� and ���� have the explicit expressions

���� = − ������,

���� = − ����� − 2���L1/2
dg�

d�
�2

+ �Lg�,
d2g�

d�2 �� ,

here ����= �L1/2g��2, �����=2�Ldg� /d� ,g��, and g�,
g� /d�, and d2g� /d�2 can be obtained by solving the equa-
ions

�F*F + �L�g� = F*h, �13�

�F*F + �L�
dg�

d�
= − Lg�, �14�

�F*F + �L�
d2g�

d�2 = − 2L
dg�

d�
. �15�

Numerically, to solve the linear matrix-vector Eqs.
13)–(15), we use the Cholesky (square root) decomposi-
ion method. A remarkable characteristic of the solution
f Eqs. (13)–(15) is that the Cholesky decomposition of the
oefficient matrix F*F+�L needs doing only once, then the
hree vectors g�, dg� /d�, d2g� /d�2 can be obtained readily.
he algorithm is given in Appendix A.

. NUMERICAL EXPERIMENTS
umerically, the minimizer of the optimization problem

9) can be obtained by computing the gradient of the func-
ion

J��gt� ª
1
2 �Fgt − ht�2 + �/2�L1/2gt�2 �16�

nd setting the gradient to zero, where F, gt, and ht are
ll in discrete space corresponding to the continuous func-
ions F, g, and h, respectively. Details about gradient
omputation of the function J��gt� are given in Appendix
.
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. Synthetic Simulations
he analytical representation of the transmitted laser
ulse and the true cross sections are given by third-order
pline functions. For example, we generate the synthetic
aser pulse function flp�x� within the interval [2,3] by the
ormula

flp�x� = − 31.25x3 + 206.25x2 − 356.25x + 218.75.

he synthetic laser pulse sampled with 1 ns resolution is
hown in Fig. 1. The analytical representation of the cross
ection function gcs�x� within the interval �3/8,1/2� is
iven by the formula

gcs�x� = 8x3 − 10x2 + 3x + 1/6.

he undistorted synthetic cross section is shown in Fig. 2.
The recorded waveform function hwf�x� (i.e., data) is

alculated by a convolution of the splines representing the
ransmitted laser pulse �flp�x�� and the cross section
gcs�x�� so that

hwf�x� = flp�x��gcs�x�.

ote that hwf represents the observation; this means dif-
erent kinds of noise may be also recorded besides the
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Fig. 1. Synthetic emitted laser pulse.
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Fig. 2. Synthetic cross sections.
rue signal. Here we only consider a simple case: we as-
ume that the noise is mainly additive Gaussian noise in
0,1], i.e.,

hwf = hwf
true + �	rand�size�hwf

true��
,

here ��0 is the noise level, and rand�size�hwf
true�� is the

aussian random noise with the same size as hwf
true. In our

imulation, the Gaussian random noise is generated with
ean of zero and standard deviation of 2. The simulated
aveform data with and without additional noise are
lotted in Figs. 3–6, respectively.
We apply our regularization algorithm to recover the

ross section and make a comparison. Initializations of
mplementing the regularizing algorithms are given in
ppendix A. Comparisons of the true cross sections with

he recovered cross sections are illustrated in Figs. 7 and
for noise levels of 1 and 2, respectively. It is apparent

hat our algorithm can find stable recoveries of the simu-
ated synthetic cross sections. We do not list the plot of
he comparison results for small noise levels since the al-
orithm yields perfect reconstructions.
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ig. 3. Synthetic recorded waveform with and without addition
f noise of level 1.
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ig. 4. Zoomed display of the synthetic recorded waveform with
nd without addition of noise of level 1.
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We also apply the traditional least-squares fitting
ethod for computing the cross sections. However, the re-

ults are unsatisfactory. The correct cross section ampli-
ude values cannot be well recovered. A comparison of re-
ults for a noise level of 2 is shown in Fig. 9.

To show the degree of fitness, we also evaluate the root
ean-square error (rmse). Smaller rmse values indicate

etter precision of approximation. The rmse is defined by

rmse =�1

l

�
i

�hcomp�xi� − hmeas�xi��2

�
i

�hcomp�xi��2
, �17�

hich describes the average relative deviation of the re-
rieved signals from the true signals. Here hcomp refers to
he retrieved waveform signals, hmeas refers to the mea-
ured unperturbed waveform signals, and l is the length
f the vectors. The results are listed in Table 1. It reveals
hat for smaller noise levels, the degree of fitness of both
ethods is similar: while as noise levels increase, the

mse values of the least-squares fitting method increase
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ig. 8. Comparison of the true and recovered cross sections in
he case of noise of level 2.
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apidly, whereas the rmse values of the regularization al-
orithm increase slowly. This means that the regulariza-
ion algorithm is more robust than the traditional least-
quares fitting method.

. Real Data Applications
ecently, three commercial airborne systems have become
vailable, namely, the RIEGL LMS-Q560 (www.
iegl.co.at), the TopEye Mark II system (www.topeye-
com), and Optech’s ALTM 3100 system (ww-
.optech.on.ca) (see [11]). The RIEGL LMS-Q560 became
perational in 2004 (see [12]). The LMS-Q560 records all
cho pulses (a copy of the transmitted laser pulse and the
aveforms of its reflections). In this test, we use data

rom LMS-Q560. The ALS flight campaign was carried
ut in April 2007 in the Leithagebirge (Eastern Austria).
he sample area contains open land as well as vegetation
nd buildings.
We tested the applicability of the proposed regulariza-

ion method to LMS-Q560 data by performing a con-
trained optimizing fit to the measured waveforms. The
llustrations of two samples of the emitted laser scanner
ensor pulses are plotted in Figs. 10 and 14. As expected,
he emitted laser pulse is close to a Gaussian function
relative differences �2%; see [3]). The recorded wave-
orm of the first echo of this pulse is shown in Fig. 11 (dot-
ed curve). We apply the algorithm presented in Subsec-
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Fig. 10. First emitted laser pulse.

Table 1. Comparison of RMSEs of
Our Regularizing Algorithm with the Least-

Squares Fitting Method for Different
Noise Levels

Noise
Level

Regularization
Algorithm LSE

0.01 8.9852e−4 4.8581e−4
0.05 8.4760e−3 2.4209e−3
0.1 1.5202e−2 4.8206e−3
0.5 2.6242e−2 2.3143e−2
1.0 3.1347e−2 4.3496e−2
2.0 3.3703e−2 7.6857e−2
3.0 3.4476e−2 9.9730e−2
ion 3.D to compute the backscatter cross section. The
esult is shown in Fig. 12. The solid curve in Fig. 11 shows
he reconstructed signal derived by the convolution of the
mitted laser pulse and this cross section. One may see
rom Fig. 12 that there are several small oscillations out-
ide the region �4010,4020� ns. But note that the ampli-
ude of these oscillations is typically small; indeed, we
onsider they are noise or computational errors induced
y noise when performing numerical inversion. However,
hey are controlled compared with the least-squares solu-
ion shown in Fig. 13, where noise propagation conceals
he solution.

The return from the second emitted pulse (Fig. 14) con-
ists of two scattering clusters in Fig. 15 (dotted curve).
e applied our inversion algorithm again to retrieve the

ross section (see Fig. 16 for the results). As in Fig. 11, the
olid curve in Fig. 15 shows the reconstructed signal.

In both cases, the least-squares solution of this problem
roved to be unstable, as already mentioned in Subsec-
ion 3.A. The respective results are therefore unsatisfac-
ory, as shown in Figs. 13 and 17.
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ig. 11. Recorded echo waveform of the laser pulse shown in
ig. 10 (dotted curve) and its reconstruction using the cross sec-
ion shown in Fig. 12 (solid curve).
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ig. 12. Backscatter cross section in time domain of the wave-
orms in Figs. 10 and 11 calculated by regularized inversion.
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The inversion methods are quite important in practical
pplications. It is well understood that the land surface is
uite complicated and in many cases it cannot be com-
osed by pure Gaussian function combinations. Therefore
he assumption about Gaussian decomposition of wave-
orms may be invalid sometimes. In addition, a major ob-
tacle for determination of the scattering cross section
rom the observed waveform is the inherent ill-posed na-
ure of the problem, i.e., we cannot hope to obtain a
nique solution unless additional constraints based on a
riori knowledge or assumptions are imposed. Tikhonov
egularization is such a tool that can impose a priori
nowledge readily. It utilizes both the stabilizer and the a
osteriori parameter choice principle to control the stabi-
izer to seek a balance. As shown in our numerical ex-
mples, by utilizing the regularizing inversion method,
e can always find reasonable cross sections. This shows

he potential application of the proposed method.

. CONCLUSION
he ill-posed nature of the model inversion is one of the
ost severe obstacles for a better estimation of the scat-
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ig. 17. Backscatter cross section in time domain of the wave-
orms in Figs. 14 and 15 calculated by least-squares fitting.
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ig. 16. Backscatter cross section in time domain of the wave-
orms in Figs. 14 and 15 calculated by regularized inversion.
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ig. 13. Backscatter cross section in time domain of the wave-
orms in Figs. 10 and 11 calculated by least-squares fitting.
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ig. 15. Recorded echo waveform of the laser pulse shown in
ig. 14 (dotted curve) and its reconstruction using the cross sec-
ion shown in Fig. 16 (solid curve).
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ering cross section of a land surface. Therefore it is de-
irable to develop new techniques for the robust estima-
ion of the scattering cross section.

The regularization technique and its numerical treat-
ent are developed in this paper and are proposed to re-

rieve laser scanner scattering cross section problems.
Our numerical simulations on synthetic data and real

ata show that the regularization method proposed in
his paper is suitable for solving ill-posed laser scanner
cattering cross section problems. However, we want to
ention that the regularization algorithm relies on the

roper regularization parameter and the balance between
he noise level and the norm of the discrepancy [see Eq.
11)]. In some cases if the noise level cannot be estimated,
ew solution techniques should be considered. Since the
egularization methods are based on the variational
odel, many optimization methods can be used to solve

he problem. Interesting problems are how to construct
fficient a priori information quantitatively and physi-
ally, how to terminate iterative algorithms to yield opti-
ality and regularity, and how to use the retrieval results

or the classification and segmentation of the interested
egion.

PPENDIX A: REGULARIZING ALGORITHM
n this appendix, we describe the procedure for choosing
he regularization parameter by the method given in Sub-
ection 3.D.

Algorithm A.1. (An a posteriori algorithm for solving
he regularizing problem)

Step 1. Input F, ht, L, the error level ��0, the initial
uess value �0�0, kmax, and the stopping tolerance ��0;
et kª0;

Step 2. solve Eqs. (13)–(15);
Step 3. compute ��k�, ���k� and ���k�;
Step 4. update �k+1 by iterative formula (12);
Step 5. if ��k+1−�k��� or k=kmax, STOP; otherwise, set
ªk+1, GOTO Step 2.

In our numerical tests, the parameters are �0=0.1, �
1.0e−6, and kmax=400. For our synthetic simulations,

he noise levels are known, so they can be used directly in
he algorithm. For real data applications, the noise level
as to be estimated. We believe our data are of good qual-

ty, so a smaller noise level �=1.0e−4 was used. For solv-
ng Eqs. (13)–(15), we use the Cholesky decomposition

ethod, i.e., we first decompose FTF+�L=GTG, and then
olve GTGgt=y by GTu=y, Ggt=u, where y=FTht.

PPENDIX B: GRADIENT COMPUTATION
n the following, we assume the norm �·� belongs to the
iscrete l2 space. Numerically, the minimizer of the opti-
ization problem (9) can be obtained by computing the

radient of the functional

J��gt� ª
1
2 �Fgt − h��2 + �/2�L1/2gt�2. �B1�

or any � in the definition domain of F and ��R, we have
J��gt + ��� = 1/2��Fgt − ht�2 + ��L1/2gt�2�

+ �/2��Fgt − ht,F�� + �F�,Fgt − ht�

+ ��L1/2gt,L
1/2�� + ��L1/2�,L1/2gt��

+ �2/2��F�� + ��L1/2��2�.

ence,

d

d�
�J��ft + �����=0

= �Fgt − ht,F�� + ��Lgt,�� = ��FTF + �L�x − FTht,��,

hich yields the gradient given by

gradgt
	J��gt�
 = �FTF + �L�gt − FTht.

By the first-order necessary condition (see, e.g., [13]),
he minimizer gt

� should satisfy gradgt
�J��gt

���=0, which
eads to solving the nonhomogeneous linear system

gt = �FTF + �L�−1FTht. �B2�

his is a well-posed system, hence, standard linear alge-
raic methods can be used.
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