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The theory of synchrotron radiation (SR) has been well understood and
published. We study the numerical methods for the reconstruction of the spectral
distribution function of SR by measurement of the attenuation of the SR energy
spectrum. The reconstruction of the spectral distribution function of SR is an
ill-posed integral operator equation of the first kind. Therefore, how to overcome
the ill-posedness is a major task in numerical computation. We study the
projected gradient methods and propose a non-monotone decreasing algorithm,
which is called the projected Barzilai-Borwein (PBB) method. The feasibility of
the method is studied in detail by using a hypothetical SR spectrum. The applied
results of the spectrum of 4W1B beamline (an unfocused X-ray monochromator
beamline with 4mrad (milliradian) of horizontal acceptance which is extracted
from the wavelength shifter 4W1) in BSRF (Beijing Synchrotron Radiation
Facility) are shown.

Keywords: synchrotron radiation (SR); projected gradient methods; numerical
inversion; X-ray attenuation

1. Introduction

The synchrotron radiation (SR) is emitted by electrons orbiting in a storage ring.
It provides X-rays which are used for a wide range of analytical techniques. Since SR was
first observed in 1947, it has been applied to many fields due to its good characteristics,
and the theory of SR has been well understood and published [1–3]. One of the important
characteristics is that the spectrum of SR source can be accurately calculated. So we often
get the SR spectrum by theoretical calculation instead of experimental measurement. But,
in reality, the feasibility of calculation is affected by many factors, for example,
fluctuations of the parameter of insertion devices and the electron orbit, the change of
acceptance angle. On the other hand, usually we are interested in the spectral distribution
at the samples. The spectrum will be changed when the light transmits some optical
elements in the beamline. Due to the above reasons, the experimental measurement of
spectrum of SR is important in practice.
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Some methods, such as monochromatization, detectors with energy resolution and
attenuation filters, have been developed to measure the X-ray spectrum. But each of these
methods has its own shortcomings. For the monochromatization method, the energy range
of the monochromator is limited and the real diffraction efficiency of the crystal is hard to
confirm, which makes an exact calculation unfeasible. Another common method is to
measure directly by solid detector with energy resolution. In order to avoid the detector
becoming saturated, some kind of scatterer is always needed. This method overcomes the
problem of energy limitation, but the complex scattering problem and the detector
response have to be taken into account.

The conventional X-ray attenuation experiments were done by adding separated
filtrations with different thickness in the light path. It is hard to reconstruct the spectral
distribution accurately because only a few discrete data can be collected by this method. In
order to obtain enough data easily, we adopt a wedged filtration. The filtration was driven
by a step motor and at the same time its thickness was changed. Experiments were done at
4W1B beamline in the Beijing Synchrotron Radiation Facility (BSRF). SR was extracted
at the straight section of 4W1 of the BSRF with an electromagnetic wiggler. Details of our
experimental setup, and experimental geometry and components have already been given
in [4]. The principle of our experiment is the detection of the attenuation of SR light and
solving an inverse problem.

Attenuation filter is a simple method in experiment. But reconstructing the real
spectrum is a difficult task because it requires an ill-posed inverse problem to be solved.
The earliest method was an analytical approach using a Laplace transform for
representing the X-ray spectral distributions in a function form [5]. Later, various
techniques for both direct computation and iterative computation were developed [6–12],
however the computational results of those methods are not satisfactory. In inversion
theory, regularization methods play an important role in stably recovering the unknowns
given that the observations are known, which has been applied successfully in a lot of fields
such as geophysics, computerized tomography, signal and image processing [13] and
Laplace transform [14,15]. It is a powerful tool for solving operator equations of the first
kind. Recently, we have applied the Tikhonov regularization method under some
conditions to reconstruct the SR spectra radiation function and obtain satisfactory results.
However, this method still relies heavily on the proper choice of the regularization
parameter and the stabilizer [4]. It is not convenient sometimes, for example, if a priori
information about the noise level is unavailable. Therefore, more robust algorithms
deserve to be studied. We study gradient methods in this article, which correspond to some
kind of regularization if proper controlling of the iterations is done. Particularly, we study
the projected Barzilai-Borwein (PBB) method in a convex and closed feasible set and apply
it to rebuild the spectrum of SR. The method originates from solving a well-posed
non-linear programming problem [16], but it is the first time it has been used for solving an
ill-posed SR spectra distribution function reconstruction problem. In addition, a projec-
tion technique for box-constrained optimization of this problem is presented. These
results, which in essence are the main contributions of the article, are the pivotal points for
the effectiveness of the numerical procedure based on the projected gradient method in BB
type analysed in this article. Numerical experiments on both theoretical and practical
simulations are performed.

The structure of the article is as follows: in Section 2, we outline the model as an
integral operator equation of the first kind; in Section 3, we first briefly introduce the
regularization method, then describe the projected gradient methods and propose a PBB
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method in detail; in Section 4, numerical experiments are given for both theoretical and

practical simulations. Finally in Section 5, some concluding remarks are given.

2. Mathematical model: ill-posed integral equations of the first kind

When SR with spectrum distribution f(E) traverse the filtration, the intensity is attenuated.

The signal obtained by the second ion chamber is

IðdÞ ¼ a

Z E1

E0

f ðEÞe��ðEÞdE½1� e��gðEÞD�dE, ð2:1Þ

where E is the energy of the light, �(E) is the absorption coefficient of the filtration, �g(E)

is the absorption coefficient of the gas filled in the chamber, d is the thickness of the

filtration, D is the length of the ion chamber, E0 and E1 are, respectively, the minimum and

maximum photon energy of the incident light. Here, a¼Gq/"ion. G is the gain of the

amplifier, q is the electron charge, "ion is the ionization energy of the gas filled in the

chamber.
Considering the wedged filtration and the width of the beam, Equation (2.1) has to be

corrected, i.e.

IðdÞ ¼ a

Z E1

E0

f ðEÞ½1� e��ðEÞw tanð�Þ�

�ðEÞw tanð�Þ
E½1� e��gðEÞD�e��ðEÞd dE, ð2:2Þ

where w is the width of the light, � is the apex angle of the filtration.
By variable replacement, Equation (2.2) can be rewritten as

Iðd Þ ¼ a

Z �1

�0

gð�Þe��d d�, ð2:3Þ

where

gð�Þ ¼
f ½Eð�Þ�Eð�Þe��gEð�ÞD½1� e��w tanð�Þ�

�w tanð�Þ

dE

d�
:

It is clear that (2.3) is a Laplace integral equation, which is a special operator equation

of the first kind, hence the ill-posed nature it inherits. This means that even if a least

squares solution with minimal norm in L2 space exists, it may oscillate severely with the

perturbation of the observation. So, direct solution of (2.3) or finding its least square

errors (LSE) solution should be avoided. To see this, first we formulate the problem in the

Hilbert space:

L : F ! R

ðLgÞð�Þ ¼ Iðd Þ,

where F andR are two Hilbert spaces, whose norm is induced by inner product and g2F ,

I2R.
If we denote the singular system of L by {�k; uk, vk}, then the singular value expansion

of L can be expressed as

Luk ¼ �kvk, L�vk ¼ �kuk
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and

Lg ¼
X1
k¼1

�kðg, ukÞvk, g 2 F ,

L�I ¼
X1
k¼1

�kðI, vkÞuk, I 2 R:

where L� is the adjoint of L. With the singular value expansion of the operator L, the

solution of the LSE problem can be approximated by

glse ¼ LyI ¼ ðL�LÞyL�I ¼
X1
k¼1

ðI, vkÞ

�k
uk,

where Ly is the Moore–Penrose generalized inverse.
Note that L is an ill-posed operator, hence Ly is unbounded if the dimension of the

range of the observation space is infinity. This indicates that glse is very sensitive to the

observations in R and the instability occurs.

3. Numerical methodology

3.1. Regularization methods

Due to the ill-posedness of (2.3), some kind of regularization technique must be involved

to suppress the ill-posed characteristic [14,15,17,18]. One may readily see that a proper

filter function to suppress the instability induced by the small singular values and noise

data should be considered. If we choose the filter function to have the terms containing

small singular values truncated, then we obtain the truncated singular value decomposition

[18]. The Tikhonov regularization technique is another choice of filter function.

The standard Tikhonov regularization refers to solving an unconstrained minimization

problem [15,19,20]

kLg� Ik2L2
þ ��ðgÞ ! minimization, ð3:1Þ

where �(g) is called the stabilizer, and the functional �(�) can be defined by users. For

example, �(�) can be chosen as k � kW1
2
, a normed space in the Sobolev space, which means

the function g is continuous and differentiable with the bounded norms of itself and its

generalized derivatives in L2. If we choose �(�) as k � kL2
, then we obtain the regularized

solution as

g� ¼ ðL�Lþ �EÞ�1L�g,

where E is the identity operator. This is equivalent to choosing the filter function as

ð�2=�þ �2Þ. � is the so-called regularization parameter which is greater than 0. The choice

of � is a delicate thing, which plays a vital role in the regularization process. Therefore, for

regularization methods, one needs to impose a regularized term with a proper choice of

regularization parameter �. However, it is hard to make the best choice in practice if a

priori information about the noise level is unavailable. To avoid difficulties, we consider

projected gradient methods in this article.
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3.2. Projected gradient methods

Equation (2.3) is a bounded Laplace transform for our detection system. Numerically,
rewriting Equation (2.3) in discrete form yields y¼Kx. In which, y and x are column
vectors with the dimensions of m and n, respectively, and K is an m� n matrix. They are
defined as follows:

y ¼

Iðd1Þ

..

.

IðdmÞ

2
664

3
775, x ¼

gð�1Þ

..

.

gð�nÞ

2
664

3
775, K ¼ a��

e��1d1 . . . e��nd1

..

. ..
. ..

.

e��1dm . . . e��ndm

2
64

3
75: ð3:2Þ

Gradient methods are used for functional minimization. Every one of them uses
an iterative formula that contains the gradient of the functional to find the minimum,
hence the name ‘gradient methods’. The problem is defined by the functional to be
minimized and the initial approximation, the starting point for the iteration. The method
stops when the maximum number of iterations is exceeded or the requested accuracy is
obtained for the solution. More than one method can be used for the same problem. Now
we turn to the minimization of a function of n variables:

J ½x� :¼
1

2
xTAx� bTx, ð3:3Þ

where A¼KTK, b¼KTy. Let xk be the k-th iterate and gradk[J] the gradient of J at xk,
given by

gradk½J � ¼ Axk � b:

A gradient method for solving (3.3) calculates the next point from

xkþ1 ¼ xk þ �kdk,

where dk¼�gradk[J ] is the negative gradient direction, �k is the stepsize that depends on
the method used. For example, for the classical steepest descent (SD) method [21], the
stepsize �k is chosen such that J [x] is minimized along the line xk� �kgradk[J ], that is,

�SDk ¼ argmin�40J ½xk � � gradk½J ��,

which leads to the solution

�SDk ¼
gradk½J �

Tgradk½J �

gradk½J �
TA gradk½J �

:

Theoretically, the solution of problem (2.3) is bounded and positive, so is problem
(3.2). That is to say, the solution x belongs to a convex and closed set �¼ {x2R

n :
l� x� u, l� 0, u51}, and l, u are all vectors in R

n. Therefore, we actually solve
a constrained optimization problem:

min J ½x� :¼
1

2
xTAx� bTx,

subject to x 2 �: ð3:4Þ

Convexity of � makes it possible to use the orthogonal projection onto �, P� : R
n
!�,

for obtaining feasible directions which are also descent ones; namely a step is taken from
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xk in the direction of �gradk[J ], the resulting vector is projected onto �, and the direction
from xk to this projection has the above mentioned properties. Ideally, the projection P�

should be chosen such that

P�ðxÞ ¼ argminzkx� zk:

For our problems with l� 0 and u51, we choose the projection operator on � as

P�ðxÞ ¼ maxðx, 0Þ

and the i-th component of P� can be expressed simply as

Pi
�ðxÞ ¼

xi if xi � 0,

0 otherwise:

�

Assume that the current iterate xk is feasible, then the next iteration point can be
obtained by

xkþ1 ¼ P�ðxk � �kgradk½J �Þ: ð3:5Þ

We outline the projected gradient algorithm as follows:

Algorithm 1 (Projected gradient algorithm)

. Initialization: Give x02� and the stopping tolerance �;

. Iteration: If kgradk[J ]k� �, then stop. Otherwise, solve Equation (3.5) to obtain
the next iterate xkþ1.

Shortcomings of this method are that it becomes slow as the iterations proceed, and

zigzagging phenomenon occurs [21]. So, it is not applicable in practical applications.

Another iterative projected gradient method is the projected Landweber method, which
is proposed by Eicke [22], for solving convexly constrained ill-posed problems in the Hilbert
space. This method is also addressed in [23]. The iteration formula reads as follows:

xkþ1 ¼ P� xk þ ! KTy� KTKx
� �� �

¼ P�ðxk þ !ðb� AxkÞÞ

¼ P�ðxk � ! gradk½J �Þ ð3:6Þ

where !2 (0, kAk�2), P�(�) is the projection operator defined as above. The projected
Landweber method is an iterative method which can be used for approximating the
solutions of the image restoration problems. Its convergence and regularization properties

have been investigated in [22]. However, a well-known fact is the practical difficulty of the
method, i.e. the convergence is too slow. Too many iterations are required to obtain the
best approximation. Therefore, if one wants to use the method, the acceleration technique
must be considered. But how to accelerate remains an important issue.

Recently, a new method for the choice of stepsize �k, called the BB method was
proposed by Barzilai and Borwein [16] for solving unconstrained quadratic programming
problems. Applications of the method to a digital image restoration problem are reported

in [24]. This method is based on the investigation of the quasi-Newton equation of
Equation (3.3)

A�xk�1 ¼ �gradk�1½J �,

180 Y. Wang et al.
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where �xk�1¼xk�xk�1, �gradk�1[J ]¼ gradk[J ]–gradk�1[J ] and minimizing the norm of

the residual �gradk�1[J ]�A�xk�1 for A approximated by ��1I (�4 0, I is the identity

matrix). This yields two choices of the stepsize �k:

�BB1k ¼
gradk�1½J �

Tgradk�1½J �

gradk�1½J �
TA gradk�1½J �

, ð3:7Þ

�BB2k ¼
gradk�1½J �

Tgradk�1½J �

gradk�1½J �
TA2 gradk�1½J �

: ð3:8Þ

The PBB method refers to choosing �k in Equation (3.5) as �BB1k in (3.7) or �BB2k in (3.8)

or a combination of both, then implementing Algorithm 1 until finding a satisfactory

solution. This method which has been seen to perform well for the quadratic model in

numerical optimization [25,26] and for ill-posed digital image restoration problems [24].

A remarkable feature of the PBB method is its non-monotonicity in iterations. In addition,

this method can avoid negative values in the iterations. We will use this method

for recovering SR spectra distribution function. For stopping criterion, we adopt the

stopping condition (suggested in [24] for ill-posed problems) in our numerical tests:

kggradk½J �k � "kgrad1½J �k, ð3:9Þ

where " is a preassigned tolerance and ggradk½J � is defined as

ðggradk½J �Þi ¼ ðgradk½J �Þi if ðxkÞi 4 0,

minfðgradk½J �Þi,0g if ðxkÞi ¼ 0:

�

Its numerical performances are illustrated in next section.

4. Numerical experiments

4.1. Theoretical simulation

In order to test the stability and reliability of the algorithm, we first generate a theoretical

spectral distribution according to the parameters of 4W1B beamline in BSRF, which is

illustrated in Figure 1(b) (solid line). The energy range of the object distribution is from

4KeV to 30KeV. The material for attenuation is Al whose thickness was chosen from 0 to

10mm and the absorption coefficients were quoted from [27]. Figure 1(a) shows the

attenuation curve without noise.
Applying our algorithm to the attenuation curve without noise, we get the numerical

inversion results. Recalling the stopping rule in Algorithm 1 is based on the norm of the

gradient, i.e. the iterations should be stopped once kggradk½J�k � "kgrad1½J�k is satisfied. In
this noise-free simulation, the tolerance " is chosen as 1.0� 10�7. In Figure 1(b), the solid

line is the object spectrum and the circles are the numerical inversion results. The errors

between the object and the results are shown in Figure 1(c). The error limit is

51.40� 10�6. The behaviour of the relative error of the PBB method in each iteration

is shown in Figure 1(d). It can be clearly seen from Figure 1(d) that the relative error does
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not decrease monotonically due to the non-monotonicity of the PBB method.
The numerical results show that the algorithm is successful when the data have no noise.

In order to test the anti-noise capability of the algorithm, a Gaussian random white
noise in [�1, 1] with a high level 0.05 (i.e. 0.05 times the Gaussian random white noise) was
added to the simulated attenuation curve. The tolerance "¼ 1.0� 10�6 is used in this case.
In our simulation process, the effects of the noise to the simulated attenuation curve can be
seen clearly in the partial enlarged detail. Figure 2(b) (solid line) shows the object
spectrum.

The numerical inversion results from the noisy attenuation curve are shown in
Figure 2(b) (circles). The errors between the true and the computational results are shown in
Figure 2(c). The error limit is50.032%. It indicates that the numerical inversion results and
the object distribution are very similar even for high noise levels. This shows that our
algorithm is stable and reliable. The behaviour of the relative error of the PBB method in
each iteration is shown in Figure 2(d). Again, it can be seen fromFigure 2(d) that the relative
error does not decrease monotonically due to the non-monotonicity of the PBB method.
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Figure 1. (a) The simulated attenuation curve without noise. (b) The solid line is the object
distribution, the circles are the numerical inversion results from the unperturbed simulated
attenuation data. (c) The relative error between the object spectrum and the numerical inversion
results from the simulated attenuation data without noise. (d) The behaviour of the relative error for
the PBB method.
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4.2. Practical SR spectral distribution function recovery

Next, we examine our algorithm for practical observation data. All experiments were done

at 4W1B beamline in BSRF (see [4] for details). In our experiments, the thickness of the tip

of the filtration is about 0.25mm. It means that SR will be absorbed by an Al foil of

0.25mm before we measure it. Therefore, in numerical comparison with the theoretical

values, an 0.25mm-thick Al is added. In our numerical tests, all curves are normalized by

the maximum.
In our calculation, 1000 points were chosen from the measurements. To ensure

convergence and sufficient iterations, the tolerance "¼ 2.5� 10�4 is used in this case.

The inversion results are shown in Figure 3(a). The dotted line represents the numerical

inversion results by using experiment data. The solid line denotes the theoretical

distribution of the light in the centre of the cross section. Comparing with

theoretical results and the calculation results, we find that our algorithm is believable

for measured data.
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Figure 2. (a) The simulated attenuation curve is perturbed with Gaussian random white noise in
[�1,1], the noise level 0.05. (b) The solid line is the object distribution. The circles are the numerical
inversion results from the perturbed attenuation curve. (c) The relative error between the object
spectrum and the numerical inversion results from the perturbed simulated attenuation data. (d) The
behaviour of the relative error for the PBB method.
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In order to check the reliability of the inversion algorithm, we have collected the data
with 35 mm Cu in the light path. In this case, the tolerance is chosen as "¼ 1.0� 10�4.
The spectrum with Cu absorption was reconstructed by the same algorithm. The result is
shown in Figure 3(b). The solid line is the theoretical result of the white light absorbed by
Cu and the dotted line is the numerical inversion results. We can clearly see the position of
the absorption edge of Cu can be reconstructed. This indicates that the numerical results of
the spectrum absorbed by Cu are reliable. Furthermore, it illustrates that the numerical
results of white light are reliable.

Both the theoretical simulation and the inversion by measurement data reveal the fact
that our method can stably and efficiently recover the SR spectra distribution function.
Therefore, we conclude that our method is applicable for the inversion in the recovery of
the SR spectra distribution function.

5. Concluding remarks

This article introduces a simple experimental method and a reliable projected gradient
method to measure and reconstruct the spectrum of SR. The inversion algorithm was
tested by theoretical spectral distribution. Several practical measurements were carried out
at 4W1B beamline in BSRF, and the numerical results are illustrated to be reliable. To deal
with the ill-posed problem described in this article, we propose projected gradient
methods, particularly a PBB method for computing the non-monotone step in each
iteration. Numerical performance reveals its good stability. Therefore, PBB method for
ill-posed SR spectrum reconstruction problem with non-negative constraints corresponds
to a kind of regularization. This regularization is ensured by the proper choice of the
stopping rule and the stopping rule does not depend on the noise level. As is seen, the
termination of the iteration process is controlled by the tolerance " in the stopping
condition (3.9). One may ask how to choose the tolerance "? Empirically, we recommend "
to be chosen as in the order of O(10�6) for synthetic data in theoretical simulations, and
O(10�4) for practical data. The stable algorithm and plenty of experimental data ensure
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Figure 3. (a) The solid line is the theoretical distribution of the centre of the light. The * line
represents the numerical inversion results from experimental data. (b) The solid line is the theoretical
result of the white light absorbed by Cu. The * line denotes the numerical inversion results.
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the reliability of reconstructed spectrum. This method can be used to measure the
spectrum of X-ray.
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