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Image restoration refers to minimizing the degradation caused by the sensor environment, such
as misfocused CCD cameras, nonuniform motions, atmospheric aerosols, and
atmospheric turbulences. In image restoration problems, it is reasonable to add nonnegative
constraints because of the physical meaning of the image. Then, the problem can be expressed
as a quadratic programming problem with nonnegative constraints. However, in previous
research, a parameterization technique is needed to reduce the problem into an unconstrained
optimization problem. To avoid parameterization techniques, we apply the recently developed
projected Barzilai–Borwein (PBB) method to solve this quadratic programming problem. Also,
a novel approach for reducing the cost of matrix-vector multiplication is proposed when apply-
ing BB and PBB methods for atmospheric image restoration. The numerical experiments show
that this method is promising for large-scale image restoration problems.
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1. Introduction

Image restoration is a major problem in digital image processing, which has been
attracting increasing attention from different research fields in recent years. Image
restoration refers to the restoration of degradation which may be caused by senor
noise, misfocused CCD cameras, nonuniform motion, atmospheric aerosols, or
random atmospheric turbulences. For example, in remote sensing applications, we
are often required to recover the true signal or image f with resolution N�N by
direct ground measurements or by the data from satellite sensors, and then giving
the information about the modulation transfer function (MTF) or the point spread
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function (PSF) of the system. The perfect case for the PSF of the sensor should be a
Gaussian distribution. A key problem in image restoration is to restore the image by
solving a blurring model and removing noise. This is because transferring the reflected
signal from the land surface to the satellite sensors inevitably encounters interference
from the atmosphere, such as atmospheric turbulences and aerosols. This interference
also leads to the blurring of the original signal.

Astronomical images are usually corrupted or distorted by blurring and noise.
The blurring is characterized by a PSF or impulse response, while the noise is usually
assumed to be additive, similar to Gaussian random noise, Poisson noise or background
noise. The power distribution in the image plane due to a point source in the object
plane can be described by:

kðx, yÞ ? fðx, yÞ ¼ hðx, yÞ þ nðx, yÞ :¼ h�ðx, yÞ, ð1:1Þ

where, h(x, y) is assumed to be the true image; h�ðx, yÞ denotes the recorded blurred
image; f(x, y) denotes the original object; k(x, y) is the 2D PSF describing the object’s
unique relation in the spatial domain; ? is the convolution operator; x and y are the
spatial coordinates; and, n(x, y) denotes an additive noise term. The above expression
is commonly modeled as a first-kind integral equation of the formZ Z

R
2
kðx� �, y� �Þf ð�, �Þd�d� ¼ h�ðx, yÞ: ð1:2Þ

The image restoration problem recovers f according to the knowledge of h� and k.
In digital image restoration, a discrete model of (1.2) is necessary. The discretization

can be performed by a discrete quadrature rule, such as a midpoint quadrature method
and a rectangular quadrature method. We will not discuss the discretization in detail,
but instead assume that after discretization, we obtain the following linear system:

Kf ¼ hþ n :¼ h�, ð1:3Þ

where K 2 R
N2�N2

, f, h, n, h� 2 R
N2

. The noise n cannot be ignored and the matrix K is
usually badly conditioned, so we cannot easily solve this linear system algebraically.

In practice, the vector f records the image pixel values, so the components of f must
be nonnegative. Thus, we can express the image restoration problem as

min�ðfÞ :¼
1

2
kKf� h�k

2;

s:t: f � 0:
ð1:4Þ

The remaining task is to approximately solve (1.4) efficiently. It is clear that (1.4) is
equivalent to a constrained convex quadratic programming problem

min�ðfÞ :¼
1

2
fTAf� hT� Kf,

s:t: f � 0,
ð1:5Þ
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where A :¼ K
T
K. There are many methods by which we can solve the convex quadratic

programming problem, but we prefer the BB method which has been shown to converge
rapidly in many situations.

The BB method was first proposed by Barzilai and Borwein [2] for solving the uncon-
strained optimization problem

min qðxÞ, ð1:6Þ

where q : Rm
�!R. The method is valid for strongly convex quadratic programming

with m variables

min qðxÞ :¼
1

2
xTAx� bTx, ð1:7Þ

where A 2 R
m�m is a symmetric positive definite matrix. Let xk be the k-th iterate and

gk the gradient of q at xk, given by

gk ¼ Axk � b: ð1:8Þ

A gradient method for solving (1.7) calculates the next point from

xkþ1 ¼ xk � �kgk, ð1:9Þ

where �k is the stepsize that depends on the method being used. For example, for the
classical steepest descent (SD) method [6,32], the stepsize �k is chosen such that q(x)
is minimized along the line xk � �gk, that is,

�SD
k ¼

gTk gk

gTkAgk
: ð1:10Þ

The key point of Barzilai and Borwein’s method is the two choices of the stepsize �k

�BB
k ¼

gTk�1gk�1

gTk�1Agk�1
ð1:11Þ

and

�BB0

k ¼
gTk�1gk�1

gTk�1A
2gk�1

, ð1:12Þ

which is based on the investigation of the quasi-Newton equation of (1.7), i.e.,

yk ¼ Ask, ð1:13Þ

where yk ¼ gkþ1 � gk, sk ¼ xkþ1 � xk. Replacing A by a diagonal matrix ��1I (�>0)
and solving

min kyk�1 � ��1Isk�1k
2
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yields

�BB1
k ¼

sTk�1sk�1

sTk�1yk�1
: ð1:14Þ

Similarly, if we use �I to approximate the inverse of A, we can choose �k as the solution
of problem

min k�Iyk�1 � sk�1k
2

and obtain

�BB2
k ¼

sTk�1yk�1

yTk�1yk�1
: ð1:15Þ

Note that sk�1 ¼ ��k�1gk�1 and yk�1 ¼ Ask�1, and hence, the equivalent form
(1.11) and (1.12) are deduced.

Note that the BB method does not enforce the nonnegative constraints. However, the
image pixels are always nonnegative, that is, f � 0. Therefore, in order to apply the BB
method to solve (1.5), the projection of the iterates to an appropriate solution set is
necessary. In this study, we solve (1.4) using an algorithm based on the PBB method,
which has recently been addressed by Dai and Fletcher [4].

This article is organized as follows. In section 2, we give a brief review of the discrete
ill-posedness of image restoration problems and the regularization methods for suppres-
sing the ill-posedness. Both the methods in the spatial domain and the frequency
domain are introduced. In section 3, algorithms for nonnegative image restoration
are addressed. In section 4, we introduce the PBB method and its variants. In section 5,
we discuss the convergence and regularizing properties of the BB and PBB methods.
In section 6, a novel approach for matrix-vector multiplication (MVM) is introduced.
In section 7, the numerical experiments are reported. Finally, in section 8, we present
the conclusion and future works.

2. Summary of discrete ill-posedness and regularization for image restoration

In this section, we describe the ill-posed nature of the image restoration problem and
summarize some developed solution methods.

The discrete ill-posedness of problem (1.3) arises from the fact that the discrete kernel
K is badly conditioned and the right-hand member h� contains noise. As a result, small
perturbations in h� may lead to significant oscillations in the inversion result. Therefore,
to stably recover the unknown, regularization is necessary. There are two ways to intro-
duce the regularization technique. One is the frequency domain regularization, that is,
we first perform a Fourier transform on both sides of (1.1) to have

k̂ð!i,!jÞ f̂ð!i,!jÞ ¼ ĥð!i,!jÞ þ n̂ð!i,!jÞ :¼ ĥ�ð!i,!jÞ, ð2:1Þ
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where k̂ð!i,!jÞ is the optical transfer function (OTF) in spatial frequencies !i and !j

and ĥ, f̂ and n̂ denote the Fourier transforms of h, f and n. The OTF describes the
degradation process which is determined by the focal length, optics, lenses, and
temperature range. The blurred image can be restored with a restoration filter yielding
the restored image f̂ð!i,!jÞ

f̂ð!i,!jÞ ¼ Rð!i,!jÞĥ�ð!i,!jÞ: ð2:2Þ

The restoration with the inverse filter, being the inverse of the OTF, that is,
Rð!i,!jÞ ¼ k̂ð!i,!jÞ

�1 results in unlimited amplification of the response when k̂ð!i,!jÞ

approaches zero for high frequencies. The undesired amplification can be alleviated
by using regularization, such as the Wiener filtering function [7]

RWienerð!i,!jÞ ¼
k̂�ð!i,!jÞ

jk̂ð!i,!jÞj
2 þ 1=SNR

, ð2:3Þ

where SNR is the signal-to-noise ratio of the image, which attenuates high noise
components. Another main filtering function in the spatial domain is the
Lagrangian filtering function, which is more commonly known as the Tikhonov
filtering function [20]

RTikhð!i,!jÞ ¼
k̂�ð!i,!jÞ

jk̂ð!i,!jÞj
2 þ �Sð!i,!jÞ

, ð2:4Þ

where Sð!i,!jÞ is an even function preassigned by users, which should be piecewise-
continuous on every finite interval; nonnegative and greater than zero for !i, !j 6¼ 0;
greater than a positive number for sufficiently large !i and !j, and
that k̂�ð!i,!jÞ=ðjk̂ð!i,!jÞj

2 þ �Sð!i,!jÞÞ 2 l2ð�1,1Þ for every �>0. For example,
we can choose Sð!i,!jÞ to be 1þ ð!2

i þ !2
j Þ

2 or !2p
i þ !2q

j , where p and q are natural
numbers [20,31].

The main shortcoming of the frequency domain regularization methods is the
difficulty of finding the appropriate ending frequency at which the OTF will vanish
quickly.

Spatial domain regularization methods is a wide research field for image restoration
problems. In the spatial domain, the canonical regularization method is the Tikhonov
regularization, whose standard form is

min kKf� h�k
2 þ ��ðfÞ, ð2:5Þ

where �ðfÞ is a penalty term on the unknown f. There are many tricks for choosing
�ð�Þ. For example, the popular choice of �ðfÞ as kfk2L, which is defined as ðLf, fÞ,
where L is the scale operator which can be chosen as a positive definite or positive
semi-definite matrix. Recently, nonsmooth regularization has received much more
attention in the restoration of nonregular images, as well as in the classification and
segmentation of textured images [19,24,28]. The nonsmooth regularization, known as
the total variation (TV)-based regularization, refers to choosing the function �ðfÞ as
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the discretization of the functional �ð f Þ ¼
R
jrf j, where rf is the gradient of f and j � j is

the Euclidean norm. In (2.5), �>0 is the so-called regularization parameter which
plays a major role in regularizing the ill-posedness. The value of � is positive and
will be typically small. But the choice of an appropriate � is a difficult thing,
which is usually related to the spectrum of the discrete kernel K and the
unpredictable noise level in h�. The solution methods for (2.5) include singular
value decomposition (SVD)-based direct method [10], Newton and quasi-Newton
method [25], gradient methods (e.g. steepest descent (SD) method and conjugate gradi-
ent (CG) method) and various preconditioning techniques [22]. CG method has proven
to be an efficient iterative regularization method for recovering the correct image from
its degradation [9]. This method overcomes the difficulty of choosing the regularization
parameter � by controlling the iteration indices; but, the optimal stopping iteration
index still depends on the noise level. Recently, a two-stage image reconstruc-
tion algorithm was proposed [11]. Based on the observation of the gravitational lens
system Q2237þ 0305 from Maidanak Observatory, the authors proposed a two-stage
algorithm: at the first stage, the algorithm is based on the Tikhonov regularization;
at the second stage, the numerical galaxy model obtained in the first stage is used for
the photometric treatment of all observational data. However, this method still relies
on the imposed regularized term with the regularization parameter �. The trust
region method has recently proved to be another useful regularization tool for image
restoration [26–30]. This method involves solving a trust region subproblem in each
inner iteration and accepting a new trial step within its trust region. No additional
regularized term with the regularization parameter � is imposed.

In the following context of our study, we will consider another iterative regularization
method in the spatial domain, which was first addressed in optimization as the BB
method [2]. Considering the physical meaning of the widely used 8-bit images, the
pixel value varies from 0 to 255. We then reformulate the problem by imposing the
nonnegative constraints. This was already considered by several researchers, such as
Bardsley and Vogel [1], Hanke et al. [8], Nagy et al. [14] and Rojas et al. [18].

3. Image restoration with nonnegative constraints

A natural way of imposing nonnegative constraints is to minimize the energy of the
noise/error in the problem (1.3) subject to f � 0. The parameterization by exponential
function can replace the constrained optimization problem with an unconstrained
problem, which actually converts a linear transform Kf into a nonlinear transform
K expðzÞ. For example, Nagy and Strakos [14] give a modified SD method for (1.4).
In their method, they use the parameterization f ¼ expðzÞ, i.e., fi ¼ expðziÞ and use
the chain rule to find the gradient of � with respect to z

gradz�ðfÞ ¼ Fgradf�ðfÞ ¼ FKT
ðKf� h�Þ, ð3:1Þ

where F ¼ diagðfÞ. Therefore, the SD method can be generated as follows

fk ¼ fk�1 þ �kdk, ð3:2Þ
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where dk ¼ �FkK
T
ðKfk � h�Þ is the search direction of the negative gradient.

To maintain nonnegativity of the iterates fk, the line search parameter �k is taken to
be the minimum of maxf�: such that fk�1 þ �dk�1 � 0g and (1.10) with gk replace
by dk�1.

Hanke et al. [8] deal with (1.3) via the Tikhonov regularization, which amounts to
minimizing the functional

�ðfÞ :¼
1

2
kKf� h�k

2 þ
�

2
kfk2 ð3:3Þ

over the nonnegative quadrant f � 0. They solve (3.3) with Newton’s method. Likewise,
in their method, they first introduce a parameterization f ¼ expðzÞ to transform the
problem into an unconstrained problem with the variable z. Then, they apply
Newton’s method to solve the unconstrained problem. The gradient and the Hessian
are given by

grad�ðfÞ ¼ FKT
ðKf� h�Þ þ �Ff, ð3:4Þ

Hess� ¼ FKT
KFþ �F2 þG�, ð3:5Þ

where G� ¼ diagðgrad�ðfÞÞ. For the solution of the linear subproblem, they further
make an approximation of the exact Hessian by

gHess ¼ FKT
KFþ �F2: ð3:6Þ

After obtaining Newton’s direction sk and stepsize �k, the next point fkþ1 can be
obtained by

fkþ1 ¼ Fk expð�kskÞ,

where Fk ¼ diagðfkÞ.
Tikhonov et al. [21] apply the method of projection of CGs to the solution of

ill-posed problems on the sets of special structure. In their method, instead of
solving (2.5), they solve the problem of minimizing �ðxÞ ¼ �ðTxÞ on �þ, where �þ

is the set of vectors having nonnegative coordinates, T is an operator from R
n to R

n,
which can be expressed as a linear combination of vertices of the convex bounded
polyhedra and f ¼ Tx. This method requires constructing an approximation solution
of (1.3) on the set of monotone functions.

Bardsley and Vogel [1] recently addressed a gradient projection-reduced Newton-CG
method to solve (3.3). They formulated the nonnegatively constrained problem by
introducing a Poisson log likelihood functional. They first defined a feasible set
� ¼ ff 2 R

m: f � 0g and then a projection of a vector f 2 R
m onto the feasible set is

defined as P�ðfÞ :¼ max ff, 0g. Their method is based on finding the active and inactive
variables. In this method, each outer iteration is comprised of two stages. The first stage
consists of projected gradient iterations to identify the active set, while the second stage
uses conjugate gradient iterations to compute a Newton step on the inactive variables.
A sparse preconditioner is also considered.
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In addition, Rojas and Steihaug [18] solved the problem:

min
1

2
kKf� h�k

2

s:t: kfk � �

f � 0:

ð3:7Þ

They formulated this problem by solving a sequential trust region subproblem, where
a new technique developed for the large-scale trust-region subproblem was performed,
that is, they first introduced a logarithmic barrier function, then reformulated it into
a new trust region subproblems and solved it. Meanwhile, the duality gap technique
is used to update the barrier parameter. Their method is actually an interior-point
method, where trust region strategies are included.

Our method is different from all of the above methods. In the above methods there is
either a need to impose a regularized term with the regularization parameter �, or a
need to introduce a parameterization by either an exponential function, or entropy
function, or logarithmic function. We prefer the PBB method for the minimization of
the norm of the residual. This method solves a quadratic programming with nonnega-
tive constraints without introducing the parameterization and the additional regular-
ized term with the parameter �. It has been illustrated that the BB and PBB method
performs well for the quadratic model in numerical optimization [4,17]. So, we hope
that this method will also be efficient for ill-posed inverse problems and not limited
to the image restoration problem considered in this study. Details are presented in
the next section.

It deserves noting that the BB and the PBB methods are essentially some kind of
gradient methods. There are several gradient descent iterative methods that have
been used for nonnegatively constrained image reconstruction without a regularization
penalty term/parameter.

Eicke [5] proposed a projected Landweber (PLW) iteration method for convexly
constrained ill-posed problems in Hilbert space, which is also addressed in [3] recently.
The iteration formula reads as follows:

fkþ1 ¼ P�½ fk þ !ðKTh� �K
T
KfÞ�, ð3:8Þ

where ! 2 ð0, kKk�2Þ, P�ð�Þ is the projection operator defined in section 4. The PLW
method is an iterative method which can be used for approximating the solutions
of the image restoration problems. Its convergence and regularization properties
have been investigated in [5]. However, a well-known fact is the practical difficulty of
the method, i.e., the convergence is too slow. Too many iterations are required
to obtain the best approximation. Therefore, if one wants to use the method, the accel-
eration technique must be considered although how to accelerate remains an important
issue.

Similar to PLW iteration method, projected gradient (PG) method can be deduced
for image restoration problem, for example, the algorithm given by Vogel [25]. The
iteration formula reads as follows:

fkþ1 ¼ P�ð fk � !̂ðKT
Kf�K

Th�ÞÞ, ð3:9Þ

566 Y. Wang and S. Ma



where P�ð�Þ is the projection operator defined in section 4, !̂ is the steplength by line
search. For SD method, !̂ ¼ kK

T
ðKf� h�Þk

2=kKK
T
ðKf� h�Þk

2. However, this
method becomes slower as the iterations proceed, and the zigzagging phenomenon
occurs [32].

Notably, for the nonparameterization algorithm, the gradient projection conjugate
gradient (GPCG) for the solution of bounded constrained quadratic programming
problem had been originally designed [13] for large scale problems. The GPCG
algorithm uses a gradient projection method to identify a face of the feasible region
� that contains the solution, and the CG method to search the face. We will
compare the GPCG method with the BB and PBB methods for large scale image
restoration problems.

4. PBB method for nonnegatively constrained image restoration

The PBB method is considered for solving box-constrained quadratic programming
(BCQP) [4]

min qðxÞ :¼
1

2
xTAx� bTx,

s:t: l � x � u,

ð4:1Þ

where A 2 R
m�m is a symmetric matrix but not necessarily positive definite, and b, l, u

are vectors in R
m. It is clear that the image restoration problem (1.4) with nonnegative

constraints is a special case of BCQP if we regard x as f, l as 0 and u as1. Before apply-
ing the PBB method to our problem raised from image restoration, we investigate
the PBB method for general box-constrained quadratic programming (4.1).

Let us define the feasible set of (4.1) as

� ¼ fx 2 R
n: l � x � ug:

In [4], the authors choose P� as the projection operator on � in the following form

P�ðxÞ ¼ midðl, x, uÞ, ð4:2Þ

where midðl, x, uÞ is the vector whose i-th component is the median of the set fli, xi, uig.
Ideally, the projection P� should be chosen such that

P�ðxÞ ¼ argmin
z

kx� zk: ð4:3Þ

And for our problems with l¼ 0 and u ¼ 1, we choose the projection operator on � as

P�ðxÞ ¼ maxðx, 0Þ ð4:4Þ

and the i-th component of P� can be expressed simply as

Pi
�ðxÞ ¼

xi if xi � 0,
0 if xi < 0:

�
ð4:5Þ
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Assume that the current iterate xk is feasible, then the next point can be obtained by

xkþ1 ¼ P�ðxk � �kgkÞ,

where gk :¼ gðxkÞ ¼ Axk � b is the gradient direction and �k is the stepsize. In the PBB
method, the choice of the stepsize is based on (1.11) and (1.12). We prefer using (1.11),
where our reasons are given in Remark 1. We also find that the BB method is essentially
a gradient method with the particular stepsize (1.14) and (1.15); and the PBB method
projects the new point to the nonnegative quadrant.

Remark 1 In practice, (1.11) is often superior to (1.12). This can be proved by inspect-
ing the spectrum of A. If A is badly conditioned or A has some small eigenvalues, then
the denominator of (1.12) will be smaller than the denominator of (1.11). Hence, the
stepsize in (1.12) has large jumps. This shows that (1.11) is more feasible in applications.

To apply the PBB method to our problem, we rewrite the equation (1.4) as the
equivalent standard quadratic programming form

minMðfÞ :¼
1

2
fTKT Kf� hT� Kf

s:t: f � 0:
ð4:6Þ

Noticing that the Hessian matrix is H :¼ K
T
K and the gradient is g :¼ K

T
Kf�K

Th�,
the PBB method can be easily transplanted.

To safeguard the decrease of the sequence MðfkÞ in each iteration, it is reasonable
to add the line search strategy. The widely used line search method is the
Armijo–Goldstein inexact line search strategy, that is, an acceptable step
dk ¼ P�ðfk � �kgkÞ � fk should satisfy the following conditions for some argument
�>0 ([32])

MðfkÞ �Mðfk þ �dkÞ � ���1d
T
kgk, ð4:7Þ

dTkgðfk þ �dkÞ � �2d
T
kgk, ð4:8Þ

where �1 � �2 are two positive parameters in (0, 1). However, as is pointed out in [4],
the nonmonotonic behavior of the BB method is lost, and the good performance of
PBB method will be degraded. Considering these shortcomings, we adopt the adaptive
nonmonotone line search method developed in [4] (a similar technique can be also
found in [23]): let Mleast be the current least value of the objective functional over all
past iterates, i.e., at the k-th iteration,

Mleast ¼ min
i

MðfiÞ, for all 1 � i � k: ð4:9Þ

Define a candidate function value Mc to be the maximum value of the objective
functional since the value of Mleast was found. Then find a reference function Mr

such that

Mr �Mðfk þ �dkÞ � ���1d
T
kgk: ð4:10Þ
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In each iteration, the reference value Mr should be improved. The method involves a
preassigned small integer parameter L>0, and Mr is reduced if the method fails to
improve on the previous least value of MðfÞ in at most L iterations. Therefore, this
method does not require the sufficient reduction in M, it is much more adaptive.
Initially, we set Mr ¼ 1. This choice of Mr allows fk � f1 on early iterations. If the
method can find a better functional value in finite iterations kfinite � L, then the
values Mr remain unchanged. Otherwise, if the iterations exceed L, the value of Mr

and Mc need to be reset, that is, Mr :¼ Mc, Mc :¼ MðfkÞ.
In our algorithm, to be sure that the first step is a decreasing step, we use the

Armijo–Goldstein inexact line search strategy instead of the PBB step. And, we use the
following stopping condition (also recommended in [4] and [13]) in our numerical tests:

k~gkk2 � "kg1k2, ð4:11Þ

where " is a preassigned tolerance and ~gk is defined as

ð~gkÞi ¼
ðgkÞi, if ðfkÞi > 0,

minfðgkÞi, 0g if ðfkÞi ¼ 0:

�

Remark 2 For the iterative methods, the iterative index k also serves as the regulari-
zation parameter [25,31]. Therefore, the iteration should be terminated in finite steps,
otherwise noise will accumulate and the restorations will not be satisfactory. For our
algorithm, the iterative index k is controlled by the parameter ". In our numerical
tests, we choose " ¼ 10�6 for 1D image restoration problem (small-scale problem)
and " ¼ 10�5 for 2D image restoration problem (large-scale problem). We also note
that there is no need to choose a smaller ", since according to the inversion theory,
a saturation state exists for iterations [31]. At such a state, further iterations cannot
improve the precision of the solutions. On the other hand, a larger " can yield faster
convergence. However, insufficient iterations will decrease the precision of the approxi-
mations. Empirically, we suggest choosing " between 10�5 and 10�3.
Now we can describe the PBB method for our image restoration problems as follows:

Algorithm 1 (PBB method for image restoration)

Step 1 Given initial point f0 � 0, L¼ 10 and set k :¼ 1;
Step 2 If (4.11) is satisfied, stop; otherwise, set dk ¼ �gðfkÞ;
Step 3 If k¼ 1, computing the stepsize �k by Armijo–Goldstein inexact line search

strategy; otherwise, computing �k as (1.11);
Step 4 Set fkþ1 ¼ P��0ðfk þ �kdkÞ;
Step 5 Safeguard the global convergence by the above mentioned adaptive non-

monotone line search technique, set k :¼ kþ 1, go to Step 2.

5. Remarks on the convergence and regularizing properties

Let {xk} be the sequence generated by the BB method from initial vectors x0 and x1.
Then the gradient of the object function q(x) at xk is gk ¼ Axk � b, and we have
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for all k� 1,

gkþ1 ¼
1

�k
ð�kI� AÞgk: ð5:1Þ

To analyze the convergence of the BB method, we can assume without loss of gen-
erality that an orthogonal transformation is made that transforms A to a diagonal
matrix of eigenvalues diagð�iÞ. Moreover, if there are any eigenvalues of multiplicity
m>1, then we can choose the corresponding eigenvectors so that g

ðiÞ
k ¼ 0 for at least

m� 1 corresponding indices of gk. It follows from (1.9) and (5.1) and using
A ¼ diagð�iÞ that

g
ðiÞ
kþ1 ¼

1

�k
ð�k � �iÞg

ðiÞ
k : ð5:2Þ

Now many things can be deduced from the recurrence. Barzilai and Borwein prove
an R-superlinear convergence result for the particular choice of the stepsize �k.
Also Raydan [17] has shown that the BB method with either stepsize formula is globally
convergent in the strictly convex quadratic case.

Since all gradient methods satisfy xkþ1 � xk 2 Spanfg1,Ag1,A
2g1, . . . ,A

k�1g1g, that
is, the Krylov properties. Therefore, there are a number of reasons that might lead
one to doubt whether the BB method could be effective in practice. Note the fact
that the BB method is nonmonotonic, this behavior may be the preferable properties
of the BB method. The nonmonotonicity of BB refers to the fact that the objective
functional q(xk) may increase on some iterations in contrast to the SD method.
The success of the BB method is the minimization of a quadratic function, subject to
simple bounds by an active set or projection type of method. If the number of active
constraints changes, as is often the case, then it is usually not possible to continue to
use the standard CG formula for the search direction and yet preserve the termination
and optimality properties. To do this, it is necessary to restart using the SD direction
when a new active set is obtained. Therefore, it is more attractive to use the BB
method in some way in this situation. The success of the PBB method is that the
BB method is efficient in the exploration of a face which indicates there is no need to
make a decision as to whether to leave the current face or to explore it further. It is
also important to consider how the PBB method compares with the PG methods that
incorporate CG steps. Details are given in numerical tests.

It is worth noting that the global convergence of PBB method (Algorithm 1) can be
realized. In fact, if Mleast is updated an infinite number of times, then global conver-
gence occurs. Assume that the opposite occurs, that is, Mleast is unchanged for all k
sufficiently large. In this case there exists an infinite subsequence of iterations ki,
such that kfinite is reached and Mr is reset to Mc. Note that Mc < Mr because Mc

is a recent value of MðfkÞ for which MðfkÞ < Mr. Thus, the values of Mr which are
reset on iterations ki are strictly monotonically decreasing. Hence, there exists a subse-
quence on which MðfkÞ decreases without bounds, which contradicts the fact that
Mleast is unchanged. This contradiction shows that the global convergence of
Algorithm 1 can be ensured. Note that BCQP is a convex optimization problem,
thus the global convergence of Algorithm 1 indicates the convergence of the iterates
ffkg of PBB.
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For the ill-posed image restoration problem, the resulting kernel matrix A :¼ K
T
K is

ill-conditioned. Therefore, like the SD method and CG method, the BB method
becomes slow after successive iterations. At such a stage, further iterations may involve
more round-off errors and noise. Therefore, the regularization technique is a must. As is
summarized in section 2, there exist a large amount of methods for ensuring regulariz-
ing properties. We recall that the BB method is the specific gradient method.
Nashed [16] had proved the regularization of the SD method for singular linear
operator equations; the similar results hold for the BB method. It seems reasonable
that PBB will share some of the regularizing properties of BB, but a rigorous proof
of this is not an easy task.

It is well known that for iterative methods, regularization can be obtained
by the truncation of iteration steps after sufficient iterations. As is noted in
Remark 2, at a saturation state of iterations, further iterations cannot improve the
precision of the solutions. Therefore, numerically we add another stopping rule, that
is, we set a maximum iteration number kmax, if the iterative index k exceeds kmax, the
iteration of Algorithm 1 should be stopped. It is worth noting that the choice of kmax

is not empirical. Generally speaking, it should be a finite small integer, preassigned
by users.

6. Matrix-vector multiplication

We suppose that the PSF kernel function in (2) is spatially invariant, that is, the kernel
is separable and can be reformulated as

kðx� �, y� �Þ ¼ kxðx� �Þkyðy� �Þ: ð6:1Þ

This indicates that the blurring is identical in all parts of the image and separates into
pure horizontal and pure vertical components.

Numerically, assume that the discretization of kx and ky are Kx and Ky respectively,
then the matrix K is a tensor of Kx and Ky, i.e., the Kronecker product of Kx and Ky,

K ¼ Kx �Ky: ð6:2Þ

‘‘vecð�Þ’’ notation is a useful tool in simplifying the expression of the matrix-vector
multiplication. Given an array U 2 R

mx�my , one can obtain a vector U 2 C
mxmy by

stacking the columns of U. This defines a linear mapping vec : Rmx�my�!R
mxmy ,

vecðUÞ ¼ ½U11, . . . ,Umx1,U12, . . . ,Umx2, . . . ,U1my
, . . . ,Umxmy

�
T:

Therefore the equation (1.4) can be rewritten as

min�ðfÞ :¼
1

2
ðKx �KyÞvecðfÞ � vecðh�Þ
�� ��2

s:t: vecðfÞ � 0:
ð6:3Þ
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6.1. MVM: FFT-based method

It is obvious that the main cost of computation in our PBB algorithm for image restora-
tion is the matrix-vector multiplication (MVM), so it is necessary to give an efficient
algorithm to compute the MVM. Generally speaking, a classical MVM accounts for
the 2m2 flops if we regard the length of the signal f as m.

Note that both Kx and Ky are matrices of the Toeplitz type. Therefore, their
Kronecker product K in (3) is a block Toeplitz with Toeplitz blocks (BTTB). By extend-
ing the BTTB into a block circulant with circulant blocks matrix (BCCB), we can use
the 2D discrete Fourier transform to compute the MVM [15,25].

The BCCB matrix can be decomposed as

K ¼ F ? �F ,

where F is the 2D discrete Fourier transform matrix, and � is a diagonal matrix

containing the eigenvalues of K. The eigenvalues of K can be obtained by computing
a 2D discrete Fourier transform (DFT) of the first column of K, so we can compute
Kx by F ?�Fx.

DFTs can be computed at a low computational cost by utilizing the fast Fourier
transform (FFT). The Fourier transform of an m-vector (signal) can be computed in
Oðm log2 mÞ operations.

6.2. MVM with sparse matrix: a heuristic approach

In atmospheric image restoration, the PSF is often modeled by a Gaussian function.
Actually, the Gaussian function closely simulates the convolution process of the true
signal with the PSF operator. Both the blurring by aerosols and turbulence can be
taken as a Gaussian, which are in the form

kðx, yÞ ¼
1

2	
2
exp �

1

2

x2 þ y2


2

� �� �
, ð6:4Þ

where 
 is a positive constant. The larger we choose 
, the more f gets smoothed.

So by the same argument, the smaller we choose 
, the more the convolution result
resembles f.

In our numerical experiments, we use the Gaussian PSF as the integral kernel k
in (1.2), so K can be represented by a kronecker product of two low order matrices
as K ¼ A� B with A 2 R

m�m, B 2 R
n�n. For the blurring process if A and B are

taken to be sparse-banded matrices [10], only pixels within a distance band–1 contri-
bute to the blurring. So, we can use a very economic algorithm proposed by [29,30].
Let us take band–2 and band–3 as examples. Similar discussions can be made for
other bands of matrices. Practically, the bandwidth is usually taken as 3.

Suppose band ¼ 2, then A, B are tridiagonal matrices. Pixels within a distance 1 of A
and B contribute to the blurring. The different elements of K are only
C ¼ Að1: 2, 1Þ � Bð1: 2, 1Þ. The resulting matrix K is a sparse BTTB with each block
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a tridiagonal matrix. If we define

A ¼

a0 a1 � � � 0

a1 a0 � � � 0

..

. ..
. . .

.
a1

0 0 a1 a0

0BBBB@
1CCCCA, B ¼

b0 b1 � � � 0

b1 b0 � � � 0

..

. ..
. . .

.
b1

0 0 b1 b0

0BBBB@
1CCCCA,

then C :¼ ðC1,C2,C3,C4Þ
T
¼ ða0b0, a0b1, a1b0, a1b1Þ

T. Thus, we can write the MVM
as follows:

y ¼

0
a1Bx1

..

.

a1Bxm�1

0BB@
1CCAþ

a0Bx1
a0Bx2

..

.

a0Bxm

0BB@
1CCAþ

a1Bx2
..
.

a1Bxm
0

0BB@
1CCA,

where

x ¼

x1
x2
..
.

xm

0BB@
1CCA, xi ¼

xi1
xi2
..
.

xin

0BB@
1CCA:

Then

a0Bx1 ¼

0
C2x11

..

.

C2x1, n�1

0BB@
1CCAþ

C1x11
C1x12

..

.

C1x1n

0BB@
1CCAþ

C2x12
..
.

C2x1n
0

0BB@
1CCA,

so we can give the MVM algorithm in a Matlab code as follows:

Algorithm 2 (Banded BTTB MVM)
function y¼MatVecTri(m,n,C,x)

y¼blockmulti(m,n,C(1:2),x);

x¼blockmulti(m,n,C(3:4),x);

y(1:n*(m-1))¼y(1:n*(m-1))þx(nþ1:m*n);

y(nþ1:m*n)¼y(nþ1:m*n)þx(1:n*(m-1));

function b¼blockmulti(m,n,D,x)

b¼zeros(m*n,1);

tmp¼D(2)*x;

b(1:m*n-1)¼tmp(2:m*n);

b(n:n:m*n)¼0;

b¼D(1)*xþb;

tmp(2:m*n)¼tmp(1:m*n-1);

PBB method for nonnegative image restoration 573



tmp(1:n:m*n)¼0;

b¼bþtmp;

In Algorithm 2, y¼MatVecTri(m, n, C, x) is a main function, which calls the block
multiplication function b¼blockmulti(m, n,D, x) to finish the BTTB MVM.

Suppose band ¼ 3, then A, B are five diagonal matrices. Pixels within a distance 2
of A and B contribute to the blurring. The different elements of K are only
C ¼ Að1: 3, 1Þ � Bð1: 3, 1Þ. The resulting matrix K is a sparse BTTB with each block
a five diagonal matrix. Similar algorithms can be made as is in Algorithm 2.

The cost of Algorithm 2 is only 4mn multiplications. For the five diagonal matrices,
the cost of the MVM computation would be 9mn. Whereas for FFT based matrix-
vector computation, the cost is Oð5mn log2 mnÞ, which is greater than 4mn and 5mn
for banded MVM for large m and n, say, m ¼ n ¼ 256, 512 or more.

7. Numerical experiments

7.1. 1D Image restoration problem

First, we consider an 1D image restoration problem. Practical image restoration
problems are in 2D space. The forward model is an 1D Gaussian PSF convolution
equation

Z b

a

kðx� yÞ fðyÞdy ¼ hðxÞ, ð7:1Þ

where kðxÞ ¼ 1=
ffiffiffiffiffiffi
2	

p

 exp

�
� 1=2

�
x=


�2�
, 
 is a positive constant. The input signal f is a

simple function with two ‘humps’

fð yÞ ¼ 2 expð�6ðy� 0:8Þ2Þ þ expð�2ðyþ 0:5Þ2Þ: ð7:2Þ

Taking a ¼ �	=2, b ¼ 	=2 and 
¼ 0.7, the right-hand vector h is obtained by
multiplication of the ðm� nÞ-dimensional matrix K, approximating the operator
in (7.1), by the column vector f of values of the exact solution on the grid fyig

n
i¼1 in

the interval ½�	=2,	=2�:

hi ¼
Xn
j¼1

KijfðyjÞ: ð7:3Þ

In order to simulate measurement inaccuracies, we add noise to the right-hand side h

as follows

h� ¼ hþ �̂ � randnðsizeðhÞÞ,

where randnðsizeðhÞÞ is random perturbation to the right-hand side with the same length
as in h and �̂ is the noise level.
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In this experiment, the performance of the BB, PBB, PLW, PG and GPCG methods
are compared. We do not list the results for all the noise levels. Instead, we only com-
pare the performance of these algorithms for a medium error level �̂ ¼ 0:01. To fully
understand the iteration process for the methods BB, PBB, PLW and PG, we do not
preassign a maximum iteration number. To make a fair comparison, we use the same
stopping rule as in Algorithm 1, while different values of " are used for different algo-
rithms, which lead to the regularization as is mentioned in Remark 2. For the GPCG,
we adopt the algorithm described in [13]. The stopping rule for CG is the same as in
Algorithm 1. But we find that it is difficult to make a best balance between the
GP iterations for the original problem and CG iterations for the reduced problem.
In our experiments, we choose maximum iteration values for GP and GPCG, respec-
tively, as 15 and 30, while for CG, the maximum iteration value is chosen as 30.
In [13], it requires a large maximum CG iteration number, which is usually assigned
to be 2 � n. We remark that for ill-posed image restoration problem, the CG iterations
cannot be large; otherwise, divergence will occur. The grids number to discretize
the system is 100. This yields a matrix K with size 100� 100. The condition
number of K is 3:5985� 1019, hence the discrete problem is highly ill-conditioned.
The true image, blurred and noise image, and the restorations are respectively plotted
in figures 1–4.

We denote the relative error between the true image and the restoration by rerr

rerr :¼
kimagetrue � imagerestorationkl2

kimagetruekl2

and record both the CPU time (seconds) and the total iteration numbers, as are
shown in table 1. In this table, " is not assigned the same. For PLW, if " < 5:0e� 5,
nonconvergence will occur; for PG, BB, PBB and GPCG, the chosen values of " in
table 1 are not optimal, but this choice can generate comparable results. It seems
that PBB method outperforms other methods. As is known, both the PG and
PLW methods inherit the slow convergence property of the SD and the Landweber
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Figure 1. Left: true image; Right: blurred noisy image.
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Figure 4. Restored images by GPCG method (left) (�̂ ¼ 0:01) and relative errors for different number of
iterations for all algorithms (right).
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Figure 2. Restored images by BB method (left) and PBB method (right) (�̂ ¼ 0:01).
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Figure 3. Restored images by PLW method (left) and PG method (right) (�̂ ¼ 0:01).
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iteration methods. So, it is not surprising that this behavior appears in table 1. Figure 4
(right) gives us a vivid illustration about the relative errors of every algorithm.
It indicates that GPCG is a little better in practice and is comparable with PBB. But
how to arrange in pairs about the PG step and CG step for highly ill-posed problems
is not an easy task. Overall, due to the fact that the problem is small in scale, the
performance is not so clear.

7.2. Atmospheric image restoration

In this section, we give examples on the restoration of atmospheric images. The blurring
process is modeled by a Gaussian PSF:

kðx� �, y� �Þ ¼
1

2	� ��
exp �

1

2

x� �

�

� �2

�
1

2

y� �

��

� �2
 !

: ð7:4Þ

In our test, we choose � ¼ �� ¼ 0:7. And the noise n is assumed to be additive, which can
be expressed as

n ¼ � � randnðN2, 1Þ,

where N is the size of the image, randnðN2, 1Þ is the Gaussian normal distributed
random vector, and we set randn(‘state’, 0) in our Matlab codes to ensure the same
random vector is generated every time. In our computation, the noise level � is gener-
ated as � ¼ level=Nð Þkhk, where level 2 ð0, 1Þ.

The image for testing is a calibrated remotely sensed image in Beijing with a size
equalling to 256� 256. The resulting PSF matrix is a BTTB with size equalling to
65,536� 65,536 and a bandwidth equalling to 5, that is, only pixels within a distance
3 contribute to the blurring.

It is clear that the BB method can also be applied to our problems. Therefore, our
numerical experiments consist of two parts. In the first part, we apply the BB
method without any projection, and in the second part, the PBB method is performed.
The true image is presented in figure 5. And the blurred images with different noise
levels: 0.005, 0.01, 0.05, 0.1 are presented in figures 6 and 7. Generally speaking, the
noise level equalling to 0.1 is large enough; otherwise, we consider the observations/
measurements to be unbelievable. The restored images are presented in figures 8–11.

Again, we denote the relative error between the true image and the restoration by rerr
(as is in section 7.1) and set the maximum iteration number as kmax ¼ 400. Note that the

Table 1. The iteration results for error level ^� ¼ 0:01:

Methods
CPU time

(secs) Number of iterations
Relative error

(rerr) "

PLW 11.897000 7470 0.18380 5.0e� 5
PG 2.764000 3941 0.13051 1.0e� 5
BB 0.121000 427 0.15214 1.0e� 6
PBB 0.521000 796 0.12765 1.0e� 6
GPCG 1.813000 30 0.14070 0.5
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Figure 6. The blurred images for different noise levels: Left: level ¼ 0:005; Right: level ¼ 0:01.
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Figure 7. The blurred images for different noise levels: Left: level ¼ 0:05; Right: level ¼ 0:1.
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Figure 8. Restored images by BB method (left) and PBB method (right) (level ¼ 0:005).
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Figure 9. Restored images by BB method (left) and PBB method (right) (level ¼ 0:01).
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Figure 10. Restored images by BB method (left) and PBB method (right) (level ¼ 0:05).
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choice of the maximum iteration number kmax is not empirical. The reason we choose
a maximum iteration number is because we do not consider further iterations to
be necessary after reaching such a number kmax. However, such a regulation is
never activated. Our algorithm converges before reaching the maximum iteration
number.

It has been shown that GPCG method is a well-developed method for solving
large-scale bound-constrained quadratic programming problems. It has better numeri-
cal performance than other methods of gradient types [13] such as the SD method and
the CG method [12] (as is illustrated in 1D example). Therefore, we only make a
comparison of the GPCG method with the BB and PBB methods. The maximal itera-
tion numbers for GPCG, GP and CG are assigned, respectively, as 20, 10 and 50.
The iteration results by BB, PBB methods and GPCG method for different noise
levels are listed in table 2. Figures 12 and 13 give us a vivid illustration about the relative
errors of the three algorithms. It indicates that the performance of PBB is better than
the others.

7.3. Discussions on the results

For the GPCG method, it is required to find the active constraints in every iteration
step. Moreover, it is required to solve a successive quadratic subproblems by the
CG method. For the BB and PBB method, the iteration is quite simple where only
the gradient steps need to be computed. Note that the main computational cost of
the image restoration problem is the MVM. So the method which costs less MVM
operations is the preferred method.

As indicated from table 2, both the BB and the PBB method generate
competitive results compared with the GPCG method. For the GPCG method, we
can see that it costs much more MVM operations than the BB or the PBB method
to get similar precision. Because the cost of MVM operation is expensive, GPCG,
though requiring relatively fewer iteration steps, will be much slower than the BB or
PBB method.
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Figure 11. Restored images by BB method (left) and PBB method (right) (level ¼ 0:1).
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Table 2. The iteration results for different noise levels.

Methods Iteration steps Number of MVM Relative error
(rerr)

Noise level
(level)

BB 140 290 0.0380 0.005
PBB 209 637 0.0358 0.005
GPCG 11 838 0.0358 0.005

BB 168 346 0.0761 0.01
PBB 209 637 0.0700 0.01
GPCG 13 1244 0.0701 0.01

BB 178 366 0.3814 0.05
PBB 204 622 0.2937 0.05
GPCG 11 1092 0.2938 0.05

BB 210 430 0.7629 0.1
PBB 224 682 0.4783 0.1
GPCG 12 1262 0.4783 0.1
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Figure 13. Relative errors for different number of iterations for all algorithms (Left: level ¼ 0:05; Right:
level ¼ 0:1).
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Figure 12. Relative errors for different number of iterations for all algorithms (Left: level ¼ 0:005; Right:
level ¼ 0:01).
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8. Conclusion and future works

In this study, we applied the BB method and PBB method to nonnegative image
restoration problems. The numerical results show that these methods are promising
for large-scale image restoration problems.

Though the PBB method can obtain a closer approximation of the true image, the
iteration is a little larger. So, the selection of the line search strategy and adopting
some kind of preconditioning to accelerate the convergence rate deserve further
research. Besides, the PBB method for ill-posed inverse problems, not limited to
image restoration problems, seem to be a regularization. But a rigorous proof deserves
further studying.
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