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Abstract� In this paper we consider the regularity of the trust region�cg algorithm�

when it is applied to nonlinear ill�posed iverse problems� The trust region algorithm can

be viewed as a regularization method� but it di�ers from the traditional regularization

method� because no penalty term is need� Thus� the determing of the so�called regular�

ization parameter in a standard regularization method is avoided� Theoretical analysis

of the trust region�cg method is presented� convergency and regularity of the trust region

algorithm are proved� and numerical tests are also given�
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� Introduction

In scienti	c and engineering computing� we are often encountered with nonlinear inverse prob�

lems
 An inverse problem consists of a direct problem and some unknown function�s� or param�

eters
 Inverse problems are usually ill�posed in the sense of J
 Hadmard� i
e
� at leat one term

of the existence� uniqueness� stability of the solution is vilated
 Particularly we are concerned

with the stability� since in many applications the solution does not depend continuously on the

unknown quantities and the problem is ill�posed
 A typical ill�posed problems is to determine

these unknowns given measured� or condaminated data


We can outline the nonlinear ill�posed problems into an abstract operator equations

F �x�  y� ���

where F � D�F � � X �� Y is a nonlinear mapping� X and Y are both seperable Hilbert

spaces
 We assume that F is continuous and compact for 	xed x � D�F �


Problem ��� is typically ill�posed in the sense that a solution x� does not depend continu�

ously on the obervation data y
 Since in practice only approximate data with some error level
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�� i
e
�

ky� � yk � � ���

are available� problem ��� has to be regularized �see e
g
 ��� �� ����
 Through out this paper we

assume that a solution x� of ��� exists� i
e


F �x��  y� ���

Regularization methods are such kind of methods which replace the ill�posed problem with

a stabilized problem whose solution depends on a parameter� named as the regularization

parameter
 The regularized problem is well�posed in the sense of J
 Hadamard
 For a complete

theoretical analysis of such kind of method� please see some well�written books ���� �� ��� �� ���

���


Certainly the most well�known and most widely used regularization method for nonlinear ill�

posed problems is the method of Tikhonov regularization
 In which one solves the unconstrained

minimization problem

min
x�X

J��x� y� � kF �x�� y�k
� � ���x�� ���

� � � is the regularization parameter
 ��x� serves as the stabilizer� i
e
� stablizes the minimiza�

tion process and provides a priori information about the solution


Replacing F �x� by 	rst order Taylor�s expansion� i
e
� ��� turns into

min
��X

J���� y� � ky� � F �xk�� F ��xk��k
� � ������ ���

If an approximate solution �k of ��� is computed� we can let xk��  xk � �k


Assume that xk is some approximation of the solution x
�� then

F �x��� F �xk�  F ��xk��x
� � xk� � r�x��xk�� ���

where r�x��xk� is the Taylor remainder
 Denoting �
�  x� � xk and solving for it leads to

F ��xk��
�  y � F �xk�� r�x��xk�� ���

The above relation can be rewritten as

F ��xk��
�  y� � F �xk� � y � y� � r�x��xk�� ���

Thus� the linearized problem

F ��xk��  y� � F �xk� ���

is an approximation to the original problem up to up to an error err  y� � y� r�x��xk� with

kerrk � � � kr�x��xk�k� ����

Clearly ��� is equivalent to applying Tikhonov regularization to problem ���
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Assumption ��� Assume that after k iterations� ��  x� � xk satis�es

ky� � F �xk�� F ��xk��
�k � 	ky� � F �xk�k� � 
 	 
 ��

Apart from the above analysis� we need the following assumption�

Assumption ��� For a certain ball B � D�F � around the exact solution x� of ���� and some

� � d � � let

kF �x�� F ��x�� F ���x��x � �x�k � dkF �x�� F ��x�k ����

for all x� �x � B�

This assumption is helpful for analyzing the properties of the trust region algorithm which we

presented in this paper


Recently� optimization methods are becoming popular for solving nonlinear ill�posed in�

verse problems� for example� Gauss�Newton method ���� ����� Broyden�s method ������� and

Levenberg�Marquardt method ������ which have been well developed in nonlinear programming


Trust region method has been used in parameter identi	cation problem and image restora�

tion problem �see ���� ���� and seems promising
 This paper will consider trust region method

for nonlinear ill�posed inverse problems


� A Trust Region�CG Algorithm

Considering the unconstrained optimization problem

min
x�X

J �x� y� � � kF �x�� y�k
�� ����

We denote by g�x� the gradient of the functional J � Hess�x� the approximate Hessian of J �

i
e
�

g�x�  F ��x�T �F �x� � y��� Hess�x�  F ��x�TF ��x��

At the k�th iteration� a trust region subproblem �TRS� for ���� is

min
x�Rn

gTk � �
�

�
�Hessk�� �� � �k���� ����

s� t� k�k � �� ����

where gk  g�xk�� Hessk  Hess�xk� and � � � is the trust region bound
 ��������� is solved

exactly or inexactly to obtain a trial step �k
 The ratio

rk 
Aredk
Predk

����

is used to decide whether the trial step �k is acceptable and to adjust the trust region bound


Aredk  J �xk� y��� J �xk � �k� y�� ����
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is called the actual reduction in the objective model� and

Predk  �k���� �k��k� ����

is the predicted reduction
 We outline the general trust region algorithm for unconstrained

optimization as follows


Algorithm ��� �Trust region algorithm for nonlinear ill�posed problem�

STEP � Given the initial guess value x� � Rn� �� � �� � 
 �� 
 �� 
 � 
 ��� � � �� �

�� 
 �� �� � �� k � �	

STEP 
 If some stopping rule is satis�ed then STOP	 Else� solve ��������� giving �k	

STEP � Compute rk	

xk�� 

�
xk if rk � ���
xk � �k otherwise�

����

Choose �k�� that satis�es

�k�� 

�
���k�kk� ���k� if rk 
 ���
��k� ���k� otherwise�

����

STEP � Evaluate gk and Hessk	 k�k��	 GOTO STEP 
�

The constant �i �i  �� � � � � �� can be chosen by users
 Typical values are ��  �� �� 

�� ��  ��  ����� ��  ���
 For other choices of those constants� please see ���� ���� ����� �����

etc

 The parameter �� is usually zero �see ���� ����� or a small positive constant �see ��� and

�����
 The advantage of using zero �� is that a trial step is accepted whenever the objective

function is reduced
 Hence it would not throw away a �good point�� which is a desirable

property especially when the function evaluations are very expensive


In STEP �� the stopping rule is based on some kind of so�called discrepancy principle� i
e
�

once the inequality

kF �xk�� y�k � �	�� with �	 � �

is satis	ed� no further iteration is needed


The following lemma is well known �for example� see ���� and �����

Lemma ��� A vector �� � Rn is a solution of ��������� if and only if there exists � � � such

that

�Hessk � �I���  �gk ����

and that Hessk � �I is positive semi�de�nite� k��k � � and

���� k��k�  �� ����
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It is shown by Powell ���� that trust region algorithms for ���� is convergent if the trust

region step satis	es

Pred��� � ckgkminf�� kgk�kHesskg ����

and some other conditions on Hess are satis	ed
 It is easy to see that

����� min
k�k�����spanfgg

��s� �
�

�
kgkminf�� kgk�kHesskg� ����

Therefore it is quite common that in practice the trial step at each iteration of a trust region

method is computed by solving the TRS ��������� inexactly
 One way to compute an inexact

solution of ��������� was the truncated conjugate gradient method proposed by Toint ���� and

Steihaug ���� and analyzed by Yuan ����


The conjugate gradient method for ���� generates a sequence as follows�

�l��  �l � �ldl� ����

dl��  �g�l�� � �ldl� ����

where g�l  r�k��l�  Hessk �l � gk with gk  g�xk�  F ��xk�
T
�F �xk� � y��� Hessk 

Hess�xk�  F ��xk�
T
F ��xk� and

�l  �g�l
T
dl�d

T
l Hessk dl� �l  kg�l��k

��kg�l k
�� ����

with the initial values ��  �� d�  �g��  �gk


Toint ���� and Steihaug ���� were the 	rst to use the conjugate gradient method to solve the

general trust region subproblem ���������
 Even without assuming the positive de	niteness of

Hess� we can continue the conjugate gradient method provided that dTl Hess dl is positive
 If

the iterate �l ��ldl computed is in the trust region ball� it can be accepted� and the conjugate

gradient iterates can be continued to the next iteration
 Whenever dTl Hess dl is not positive

or �l � �ldl is outside the trust region� we can take the longest step along dl within the trust

region and terminate the calculations


Algorithm ��� �Truncated conjugate gradient method for TRS�

STEP � Given ��  �� � 
 � 
 �� � �tolerance� � � and compute g��  r������ set

l � �� d�  �g��  �gk	

STEP 
 If kAk�l � �ukk � �k�ukk� stop� output �
�  �l	

Compute dTl Hess dl if d
T
l Hessk dl � � then goto step �	

Calculate �l by �
���

STEP � If k�l � �ldlk � �k then goto step �	

Set �l�� by �
�� and g�l��  g�l � �lHessk dl	

Compute �l by �
�� and set dl�� by �
��	

l�l��� goto step 
�
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STEP � Compute ��l � � satisfying k�l � ��l dlk  �	

Set ��  �l � ��l dl� and stop�

Note that ��l can be computed by choosing the positive root of the quadratic equation in ��

kdlk
��� � ���l� dl��� k�lk

� ���
k  �� ����

Let �� be the inexact solution of ��������� obtained by the above truncated CG method and

�� be the exact solution of ���������
 Recently Yuan ���� shows that

����� �����

����� �����
�
�

�
� ����

which can be written as the following theorem�

Theorem ��� For any � � �� g � Rn and any positive de�nite matrix Hess � Rn�n� let �s be

the global solution of the trust region subproblem ���������� and let �� be the solution obtained

by the truncated CG method� then

����� �
�

�
���s�� ����

This theorem tells us that the reduction in the approximate model is at least half of the max�

imum reduction if we use the truncated conjugate gradient method for solving the subproblem

���������


Applying Algorithm �
� to compute the trial step �k in Step � of Algorithm �
�� we obtain

a trust region�cg algorithm for nonlinear ill�posed inverse problems
 The algorithm consists

of two stage iterations� the inner loop and the outer loop
 The inner loop is the truncated

conjugate gradient method� the outer loop is the trust region method


To avoid too many inner loop iterations in one out loop iteration� we terminate the inner

loop iteration if itermax cg steps have been taken� where itermax is a given positive number


We also terminate the inner look iteration if a progress in function reduction in the cg step is

smaller than �
 However� in our numerical tests� this termination rule was not activated


� Properties of Algorithm ���

In this section we give some properties of the truncated conjugate gradient method
 The main

result is the monotonicity of the iterates


First� we present an equivalent form of the conjugate gradient method
 Denote

Ak  F ��xk�� uk  y � F �xk�� r�x��xk�� �uk  y� � F �xk��

we have

Hessk  A�kAk� gk  �A�k�uk� g
�
l  A�k�Ak�l � �uk��
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dl��  �g�l�� � �ldl  �A�k�Ak�l�� � �uk� � �ldl

 �A�kAk�l � �lA
�
kAkdl �A�k�uk � �ldl�

If we let dl  A�kzl provided that such zl exists� then

dl��  A�k��uk �Ak�l � �lAkdl � �lzl��

Further if we denote rl  �uk �Ak�l� then clearly

rl��  �uk �Ak�l��  rl � �lAkdl

and

dl��  A�k�rl � �lAkdl � �lzl�

hold
 We can generate the next search direction by dl��  A�kzl�� with zl��  rl � �lAkdl �

�lzl  rl�� � �lzl� Hence� the conjugate gradient iterates can be genereated in the following

way�

�l��  �l � �ldl ����

dl  A�kzl ����

zl��  rl�� � �lzl ����

rl��  rl � �lAkdl ����

�l  �
g�l

T
dl

dTl Hess dl

kA�krlk

�

kAkdlk�
����

�l 
kA�krl��k

�

kA�krlk
�

����

�l��  � � �l�l ����

The initial values are ��  �� d�  �gk� z�  r�� r�  �uk  y� � F �xk�� ��  �
 Here another

scalar �l is added� which will be used for the analysis of the truncated conjugate gradient

method


One tool for the analysis of the truncated conjugate gradient method is the so�called residual

polynomials �see ���� ���
 Let �l be the set of all polynomials of degree l or less� and set

��l � fp � �l � p���  �g�

Then there is an ��� relation between elements � � Kl�A
�
k�uk�A

�
kAk� and p � ��l via the

representation

�uk �Ak�  p�AkA
�
k��uk ����

of the corresponding residual� where Kl�A
�
k�uk�A

�
kAk� is the l�th Krylov subspace

Kl�A
�
k�uk�A

�
kAk�  spanfA

�
k�uk� �A

�
kAk�A

�
k�uk� � � � � �A

�
kAk�

l��A�k�ukg�
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For simplicity� pl � �
�
l denotes the residual polynomial associated with �l� the l�th CG iterate


The bilinear form


 p� q �� �p�AkA
�
k��uk� q�AkA

�
k��uk�

de	nes the inner product for p� q � �l
 If q � �l�� is an arbitrary polynomial of degree l � �

then the polynomial p given by p��  pl�� � tq�� belongs to ��l for every t � R
 Noticing

that pl solves the minimization problem


 p� p ��� min for p � ��l �

Hence�


 pl� q �
�

�

d

dt

 p� p � jt��  �� for all q � �l��� ����

If we de	ne q  ql�� by pl  �� ql��� then clearly we have that�


 pl� � �
 pl� pl �� ����

which will be used for later analysis


From ��������� and the above de	nitions� we have that

zl  sl�AkA
�
k��uk� sl�� �

pl��� pl����

�l
� �l� ����

It was pointed out by ��� that in general sl does not belong to �
�
l 
 Instead� since the vectors zl

are updated by zl��  rl�� � �lzl with rl��  �uk �Ak�l��� it follows from ���� that

sl����  pl���� � �lsl��� ����

and hence� sl��� and �l of Algorithm �
� share the same recurrence relation �this in fact has

been observed by ����� i
e
�

sl���  �l� ����

With the above analysis� we can now present the monotonicity of the iterates for perturbed

right�hand side


Theorem ��� Let � � �� l� � N � If Assumption ��� holds and if

k�uk �Ak�lk
� � k�uk �Ak�l��k

� � 	�
kzlkk�ukk

�l
� � 
 	 
 �� l  �� �� � � � � l�� ����

then k�� � �lk is strictly monotonically decreasing for l  �� �� � � � � l�� and

k��k� � k�� � �l���k
� � �� � ��	k�ukk

l�X
l��

�lkzlk� ����
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Proof� By induction� we obtain

k�� � �l��k
�  k�� � �l � �ldlk

�

 k�� � �lk
� � ���� � �l� �lA

�
kzl� � ��lA

�
kzl� �lA

�
kzl�

 k�� � �lk
� � �l��Ak�

� � �Ak�l � �lAkdl� zl�

 k�� � �lk
� � �l��uk � Ak�l� zl�� �l��uk �Ak�l��� zl�

���l��uk �Ak�
�� zl��

From the de	nitions of pl and zl� we have

k�� � �lk
� � k�� � �l��k

�  �l 
 pl� sl � ��l 
 pl��� sl � ���l 
 �uk �Ak�
�� zl � �

By ����� sl��  �l � q�� for some polynomial q � �l��� and hence from ���� and ���� we

	nd that

k�� � �lk
� � k�� � �l��k

�  �l�l�
 pl� � � � 
 pl��� � ��� ��l 
 �uk �Ak�
�� zl �

 �l�l�
 pl� pl � � 
 pl��� pl�� ��� ��l 
 �uk �Ak�
�� zl � �

Since 
 pl� pl � k�uk �Ak�lk
�� hence it follows from the above relation and ���� that

k�� � �lk
� � k�� � �l��k

� � 	��lkzlkk�ukk � �	�lk�ukkkzlk� for all l  �� � � � � l
�� ����

Thus� the monotonicity of k�� � �lk follows from the above inequality and the assumption

� � �
 Relation ���� follows by taking the sum of ���� for l  �� � � � � l� and observing the fact

that ��  �
 Q
E
D

Remark ��� We have noted that in general sl will not belong to �
�
l � however� �sl � sl��l � �

�
l �

Hence from the minimization property of the truncated CG we obtain

k�uk �Ak�l��k � k�uk �Ak�lk 
 pl� pl �
�
��
 �sl� �sl �

�
�

�

�l

 sl� sl �

�
�

�

�l
kzlk� ����

This together with ���� yield that

�k�uk �Ak�l�k
� � k�uk �Ak�l�k

� � k�uk �Ak�l���k
�

� 	�
kzl�kk�ukk

�l�
� 	�k�ukkk�uk �Ak�l�k�

which indicates that

k�uk �Ak�l�k �
	�k�ukk

�
� 	k�ukk�

Since k�uk �Ak�
�k � 	k�ukk according to Assumption ���� this shows that l� can not exceed lk�

the smallest index of the inner iteration�
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� Convergence of Trust Region�CG for Exact Data

Before presenting the proposition in the following paragraph� we 	rst give an assumption�

Assumption ��� Assume that in each inner iteration� �l satis�es

k�uk �Ak�lk � 	�k�ukk� with 	��  �	 ����

until convergence� where � 
 	 
 ���� � � ��

Assumption �
� is closely related with the termination rule of Algorithm �
�
 Where� � in STEP

� serves as the number 	� here
 Once the opposite inequality of Assumption �
� is satis	ed� we

stop the inner iteration


Proposition ��� Suppose that Assumption ��� holds� The inequality ���� indicates that ����

is true if l � �� Furthermore� there are only �nitely many l for which ���� holds�

Proof
 From the Remark �
� we know

�

�l
kzlk 
 �sl� �sl �

�
� �

It is proved by ���� that 
 �sl� �sl � is strictly monotonically decreasing with l� consequently

�

�l
kzlk 


�

��
kz�k  kr�k  k�ukk�

The above inequality together and ���� indicates that ���� is true for l � �
 From Remark �
��

we see that ���� holds for only 	nitely many indices l
 Q
E
D

Now assume that y�  y� we 	rst prove the monotonicity of the trust region�cg algorithm�

i
e
� xk � �lk is a better approximation of x
� than xk
 We also assumed that F �x�  y has a

solution x� � B � D�F �


Proposition ��� Assume that Assumptions ��
 and ��� holds� then the iteration error kx� �

xkk is monotonically decreasing�

Proof� According to Assumption �
�� ���� holds for x  x�� �x  xk� i
e


ky � F �xk�� F ��xk��x
� � xk�k � dky � F �xk�k�

Note that y�  y� the above expression indicates that Assumption �
� is ful	lled with � 
 d 
 �


Due to Assumption �
��

k�uk �Ak�lk
� � �	k�ukk

�

is satis	ed
 Hence from Proposition �
�� the requirement of Theorem �
� is ful	lled


From our notations� we have that xk��  xk � �lk 
 Thus� from ��  x� � xk� �
� � �lk 

x� � xk�� and Theorem �
�� we see that kx
� � xk��k 
 kx� � xkk
 Q
E
D
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Remark ��� Propostion ��� also implies two inequalities

kukkkwkk 

�

d�� � ��
�kx� � xkk

� � kx� � xk��k
�� ����

and

kukk
� 


kAkk
�

d�� � ��
�kx� � xkk

� � kx� � xk��k
��� ����

���� is straightforward as kuk �Ak�
�k � dkukk with � 
 d 
 �
 ���� follows from relations

kukkkwkk � ��kukkkz�k  ��kukk
�

and

�� 
kA�kr�k

�

kAkd�k�


kA�kukk
�

kAkA�kukk
�
� kAkk

���

Theorem ��	 Given the exact data y�  y and suppose that Assumptions ��
 and ��� hold�

Then the iterates fxkg generated by Algorithms 
�� and 
�� converge to a solution of ��� as

k ���

Proof
 First we prove that fxkg forms a Cauchy sequence
 Let us denote the iteration errors

by ek  x� � xk
 Given k� j � N with k � j� let � � fj� � � � � kg be chosen in such a way that

ky � F �x��k � ky � F �xi�k� i  j� � � � � k�

Consider now

ke� � ejk
�  kejk

� � ke�k
� � ��e� � e� � ej�� ����

Note that

ej � e�  x� � xj � x� � xj 

���X
i�j

A�iwi�

where Ai  F ��xi�� wi 
Pli��

l�� �lzl
 Hence we obtain

j�e� � e� � ej�j  j
���X
i��

�A�iwi� e��j �
���X
i��

kwikkAie�k�

We can estimate that

kAie�k  kAiei �Ai�e� � ei�k

� ky � F �xi�� F ��xi�eik� kF �x��� F �xi�� F ��xi��e� � ei�k

�ky � F �x��k

� dky � F �xi�k� dkF �x��� F �xi�k� ky � F �x��k

� �dky � F �xi�k� �� � d�ky � F �x��k � �� � �d�ky � F �xi�k�
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Relation ���� and the above expression give that

j�e� � e� � ej�j � �� � �d�

���X
i�j

kwikky � F �xi�k

�
� � �d

d�� � ��
�kx� � xjk

� � kx� � x�k
���

which� together with ����� yields

ke� � ejk
� � C�kx� � xjk

� � kx� � x�k
��

with C  �	���d

d	���
 � � independent of �� j� k
 Similarly one can obtain

kej � e�k
� � C�kx� � x�k

� � kx� � xjk
���

hence

kxk � xjk
�  kej � ekk

� � ��kek � e�k
� � ke� � ejk

��

� �C�kx� � xjk
� � kx� � xkk

��� ����

Therefore� fxkg form a Cauchy sequence because the monotonicity of fkx
� � xkkg


Denote the limit of xk by x
 From ���� we know
P�

k�� kukk
� converges� and therefore

F �xk�� y as k ��
 This indicates that x is a solution of ���
 Q
E
D

� Regularity of the Algorithm for Inexact Data

Now we consider the case where inexact date y� instead of y
 It is assumed that ��� is satis	ed


Our stopping rule is based on the discrepancy principle� i
e
� we terminate the calculations

at the smallest iteration index kD such that the discrepancy inequality

ky� � F �x�k�k � �	�� with �	 � � ����

holds


We denote x�k the corresponding iterates and consider the regularity of the trust region�cg

algorithm


Theorem 	�� Assume that Assumptions ��
 and ��� hold� Let x be a solution of ��� with F

satis�es ���� for some � � d � � in a ball B � D�F � around x� Let �	 in ��
� be chosen that

�	 � ��d
��d � Then kx � x�kk is monotonically decreasing� Moreover� Algorithm 
�� terminates

after kD 
� iterations�

Proof
 We prove that

kx� x�k��k � kx� x�kk ����



Regularity of Trust Region�CG ��

with x a solution of ���


Using Assumption �
�� we estimate that

ky� � F �x�k � F ��x�k��x � x�k�k � � � kF �x�� F �x�k � F ��x�k��x � x�k�k

� � � dky � F �x�k�k

� �� � d�� � dky� � F �x�k�k�

According to the discrepancy principle� ky� � F �x�k�k � �	� as k 
 kD� hence

� 

�

�	
ky� � F �x�k�k

and

ky� � F �x�k � F ��x�k��x � x�k�k �
� � d� �	

�	
ky� � F �x�k�k�

By assumption� � 
 �� � d � �	���	 
 �� hence Assumption �
� is ful	lled
 Consequently

Propostion �
� applies and the monotonicity assertion ���� follows as in the proof of Proposition

�
�


Next we show that there are only 	nite number of iterations
 In fact as the same as in the

proof of ����� we have

ky� � F �x�k�k
� 


L

d�� � ��
�kx� x�kk

� � kx� x�k��k
�� ����

with L  supfkF
�

�x�k�k
�g for all k 
 kD


Assume that ���� holds for x  x�
 Now taking the sum of ���� for k  �� �� � � � � kD � � we

obtain

�kD � ���	��� �

kD��X
k��

ky� � F �x�k�k
� �

L

d�� � ��
kx� � x�k

� 
��

This indicates that kD is a 	nite number
 Q
E
D

Theorem 	�� Assume that F �x�k� � F �xk� as � � �� If k � kD for all � su�ciently small�

then x�k � xk for k � kD as � � ��

Proof
 Given su ciently small number �� we want to prove kx�k � xkk � � as � � � for

k � kD
 We proceed by induction


Assume that x�k � xk as � � �� and that k � � � kD
 Note that

xk��  xk � �lk � x�k��  x�k � ��lk �

�lk  F �xk�
�
lk��X
i��

�izi� ��lk  F �x�k�
�
lk��X
i��

��i z
�
i �
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we can estimate that

kx�k�� � xk��k � kx�k � xkk� k�
�
lk
� �lkk

� kx�k � xkk� kF �x
�
k�
�
lk��X
i��

���i z
�
i � �izi�k

�k�F �x�k�
� � F �xk�

��

lk��X
i��

�izik

� kx�k � xkk� kF �x
�
k�k�lk � ��max

i
fk��i z

�
i � �izikg

�kF �x�k�� F �xk�kk

lk��X
i��

�izik ����

By the induction assumption x�k � xk� we have that

F �x�k�� F �xk��

Therefore� it follows that ��i � �i� z�i � zi
 Consequently� it from ���� that x
�
k�� � xk��


Q
E
D

Theorem 	�� Assume that F satis�es ���� in some ball B � D�F � and let y� � x� as before�

Then the iterates x�k generated by Algorithms 
�� and 
�� converge to a solution of ��� as k ��

and � � ��

Proof
 For simplicity� We use k��� instead of kD in the following analysis


From Theorem �
� we know that iterates xk converge to a solution of ���
 Combining this

fact with Theorem �
�� we 	nd that the iterates x�k converge to a solution of ��� for k � k���

as � � �


Now assume that k��� � � as � � �� and denote x� the limit of the iterates xk � x
� is a

solution of ���
 It su eces to consider subsequences fk��n�gn which are monotinically increasing

to in	nity as n�� and �n � �
 Without loss of generality� let us consider k��m� � k��n� for

m � n
 By the monotonicity of x�k� i
e
� Theorem �
�� we have

kx�m
k	�m
 � x�k � kx�m

k	�n

� x�k � kx

�	m

k	�	n
 � xk��n�k� kxk	�n
 � x�k�

Given a su ciently small number � � � and for some su ciently large number n� kxk	�n
 �

x�k � ��� by Theorem �
�
 On the other hand� for su ciently large number m and 	xed

n� kx
�	m

k	�	n
 � xk��n�k � ��� by Theorem �
�
 This proves that kx�m

k	�m

� x�k � � for all m

su ciently large� and thereafter x�m
k	�m
 � x� as m � �
 Hence� we see that x�k � x� as

k �� and � � �
 Q
E
D
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� Numerical Test

In this section� we give an example to test our algorithm
 The example is the inverse Gravimetry

problem �see �����
 We write it as

F �x� � X �� Y

F �x��t� 

Z b

a

k�t� s� x�s��ds  y�t�� t � �c� d�� ����

with k�t� s� x�s��  ln 	t�s
��H�

	t�s
��	x	s
�H
� 
 Clearly the kernel k is de	ned on the set �  f�c� d� 	

�a� b�	Rg and k�t� s� x�s�� � C����
 The 	rst derivative F ��x� � X �� Y is de	ned by

�F
�

�x�u��t� 

Z b

a

�k

�x
�t� s� x�s��u�s�ds� t � �c� d�� ����

where the kernel �k
�x
�t� s� x�s�� can be evaluated by

�k

�x
�t� s� x�s�� 

��H � x�s��

�t� s�� � �x�s� �H��
�

F
�

�x� is compact� since the kernel is square integrable


Now� we will set up the problem of approximate determination of normal pseudosolution to

the equation ����


For simplicity� two equidistant grids on intervals �a� b� and �c� d� are applied�

!n�s�  fsj � sj  a� hs�j � ��� j  �� �� � � � � ng� hs 
b� a

n� �
�

!m�t�  fti � ti  c� ht�i� ��� i  �� �� � � � � ng� ht 
d� c

m� �
�

In this way� the spaces of all grid functions de	ned on !n�s� and !m�t�� respectively� are treated

as Xn and Ym


The integral operator F gives rise to an operator Fmn � Xn �� Ym by

�Fmn�x��i 

Z b

a

k�ti� s� x�s��ds� � � i � m�

Similarly the derivative operator F
�

�x� yields an m	 n matrix�

�F
�

mn�x��ij 

Z b

a

�k

�x
�ti� s� x�s���j�s�ds� � � i � m� � � j � n�

Where �j�s� we used is the standard linear basic functions

�j�s� 

��
�

s�sj��
h

� if s � �sj��� sj ��
sj���s

h
� if s � �sj � sj����

�� else�

In which� sj  jh� h  �
n
� j  �� �� � � � � n
 The integral can be computed numerically
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Figure �� Solution of the inverse problem� nonlinear Fredholm equation

We take �a� b�  �c� d�  ��� ��� H  ��� and di"erent m� n to give a discretization
 Our true

function is xtrue�s�  ���s��� s� � ���� and it is discretized by evaluating it at the points si to

give the components xi of x
 The right�hand side y is generated by integral ����


The numerical results are shown in 	gures � and �
 In all of these 	gures� the true solution

is denoted by solid line� the approximate solution is denoted by dotted line


First we choose� n  ��� m  ��� �	  ���� �  ���� ��  ��� with perturbation error level

�  ����
 The results are shown in the left of Figure �� It needs �� inner iterations and �� outer

iterations to generate convergence


Then we choose n  ��� m  ��� �	  ���� �  ���� ��  ���� with small perturbation

�  ������ The results are shown in the right of Figure �
 It needs �� inner loops and �� outer

loops to generate convergence


Finally we choose n  m  ��� ��  ��� with large perturbation �  ���� and dominant

parameter �	  ���� �  ��� to give a computation
 The results are shown in Figure �
 It needs

� inner iterations and �� outer iterations to generate convergence


Remark 
�� To safeguard Pred is not too small� we choose �  ��� 	 ������ If Pred � ��

then we regard it as zero and stop the inner iteration� However� this is not activated in our

numerical test�

Remark 
�� In practical applications� the right�hand side is the observation data y� which

contains noise or error instead of the exact data ytrue� To give a reasonable simulation of the

observation data� we add Gaussian white noise rand to the right�hand side ytrue� i�e��

ynoise  ytrue � � 
 rand� ����

where rand is a vector with its components some random numbers in ��� ���

Note that � should not be too small or too large� If � is too small� according to ����� the

noise will not be enough important to give interesting results� However� if � is too large� the
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Figure �� Solution of the inverse problem� nonlinear Fredholm equation

observation is a poor approximation to the original problem� it will also not enough to give a

reasonable results�

	 Conclusion

We have establised the convergence and regularity of the trust region�cg method for nonlinear ill�

posed inverse problems
 It deserved pointing out that Plato in ���� had establised the regularity

property of the conjugate gradient method
 Later on� Hanke in ��� had established the regularity

of Newon�CG method
 All of the methods are stable for solving ill�posed inverse problems
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