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Abstract The adaptive regularization method is first proposed by Ryzhikov et al. in [6] for the deconvolution
in elimination of multiples which appear frequently in geoscience and remote sensing. They have done experi-
ments to show that this method is very effective. This method is better than the Tikhonov regularization in the
sense that it is adaptive, i.e., it automatically eliminates the small eigenvalues of the operator when the operator
is near singular. In this paper, we give theorctical analysis about the adaptive regularization, We introduce an
a priori strategy and an a posteriori strategy for choosing the regularization parameter, and prove regularities
of the adaptive regularization for both strategies. For the former, we show that the order of the convergence
rate can approach O(||n||71'§_V-F_\) for some 0 < v < 1, while for the latter, the order of the convergence rate can

)

be at most O(||n|| ForT ) for some 0 < v < 1,
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1 Introduction

In remote sensing and geoscience, we are usually required to remove the effects of the unwanted
signatures. This is related to a decovolution process of the time series (see [2,4,5,7,9]). For a
stationary time series, the traditional method is the Wiener filter. However, in many cases,
the records of a time series are highly non-stationary so the Wiener filter is not so effective
for reducing instability. Regularization methods have been proved to be a useful tool for
suppressing instability (see [1,8,10]). In principle, the deconvolution problem can be considered
as a solution of discrete first kind Volterra equation, which is usually solved by regularization.
Let us consider a linear system

d=Wr+n, (1)

where W is a linear operator, r is the input vector and d is the output vector. n is a random
vector often containing noise or error. Qur purpose is to minimize the noise or error, i.e.,

|7]|* — min.
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which is equivalent to find a vector # such that
J:=nTn=(d-Wr)T(d = Wr) — min, v or. (2)

Let VJ = 0. We have
WTwr - W7Td = 0. (3)

The above equation can be written as an algebraic equation
Or —7 =0, (4)

where ® = WTW is the Fisher matrix or operator and 7 = W7d.

(4) is ill-posed in the sense that there exist an infinite number of r such that or 0,
hence ®(r + r') ~ ®r. Therefore, in computing, the probability of finding r + r" (instead of
r) by a computer is 1 almost everywhere. Moreover, ® is an ill-conditioned operator, so (4)
is sensitive to noise. Small perturbations of the data d may lead to significant transfer of the
error, so instability occurs,

A proper way to overcome the instability is by the regularization methods. Tikhonov
regularization is the well-known onel®l. According to this idea, we add a penalty to J and have

Ti=TJ+AJ=n"n+arTHr, (5)

where H > 0 is a positive definite matrix, a > 0 is the so-called regularization parameter.
Differentiating (5) with respect to r, we obtain the discrete Euler equation

(®+aH)r=r. (6)

Different H leads to different smoothness of solutions. Clearly, if we choose H = I, I is the iden-
tity matrix, then (6) is the standard Tikhonov regularization. Ryzhikov and Biryulinal® chose
H = &' and called the corresponding method adaptive regularization. They had done exper-
iments to show that the adaptive regularization was much better than the standard Tikhonov
regularization. We will give a theoretical analysis of their method and prove that the adaptive
regularization can approach asymptotical optimality.

We note that the method of Ryzhikov and Bivyulina is formulated in finite spaces. In
this paper, we extend their method to infinite spaces and give a theoretical analysis on the
convergence and optimality of the adaptive regularization. To be consistent we use the same
notation, i.e., (1) is reformulated in an infinite space,

W:R— D, Wr = d,, (7)

where R and D are both Hilbert spaces which denote the input space (parameter space) and
output space (observation space) respectively, d,, ‘= dirue + 7. In the following, all of the
equations (2)-(6) refer to the formulation in infinite spaces. Accordingly, the transpose is
replaced by adjoint, i.e., W7 is replaced by W*, so to others. All of the norms used in the
following paragraph are L?-norm. The following definition is about the spectrum of the adjoint
operator ®, which will be used in later sections.

Definition 1.1,  For any A, let Ey be an orthogonal projection operator onto
Xy = span{ur 1 k € N, B < A} (+Null(®), if A > 0),

where {Br;ur} is the eigensystem of ® and let us define

dx = /)\dE,\m, for z€R.
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For a given map f, we define

1£(@)z]? = / PN\ Exa®

The paper is organized as follows. In Section 2, we analyze the convergence properties of
the adaptive regularization method when the observation data d,, is error-free, i.e., d,, = dirye-
In Section 3, the optimality results are obtained under an a priori choice of the regularization
parameter o. In Section 4, the optimality results are obtained under an a posteriori choice of
the regularization parameter c. Finally in Section 5, some concluding remarks are given.

2 Convergence of the Adaptive Regularization Method

First, we introduce the concept of the adaptive regularization. The adaptive regularization
method is defined as follows. Choosing H = ® ! in Euler equation (6) (here we assume that
the inverse of ® exists), we have

(®? + od)r = &7, (8)

Define the filter operator R29#P*()\) = A(A? 4 o) ! and denote the solution of (8) as r&. Then
T2 can be expressed as

& = RMaPt(H)7F. (9)

In the ideal case, we can drop the noise n in (1) and have dyue = Wrt, where 7t denotes the
true solution of (1). In this case, the solution of (8) becomes

Radapt(Q)Ttruea (10)

where Tiue = W dige.
It is easy to see that R24#Pt()\) —» X\=1 as @ — 0. Thus R2P%(®) is an approximation to
the inverse of ®. Defining the Tikhonov filer operator as RL*"(\) = (A + a)~ !, we have

Redapt(}) 0, as A — 0,

(11)
RT*h(\) — o™, as A — 0. (12)

This indicates that if the operator ® is degenerated and has an eigenvalue being null then
the adaptive inverse operator eliminates the null-space components. Therefore the adaptive
regularization isbetter than the Tikhonov regularization.

@2 < < 3V3|In)®

Lemma 2.1. |r2—r Teva

Proof.

rg — r*||* =|| R242PYDYW T (d — dyrue) ||
=(W R*apt (&) R24aPY YW T (d — dhrue), d — dyrue)
<”Radapt( )Radapt( WTWH”d _ dtrue”2
<[(®* + al)72@%||||n|?
3\/‘
= lﬁf

In)|?.

Lemma 2.2. 7%= R2%PY(®)7, . — T as a — 0, where, rt is the true solution.
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Proof. Assume that {u;,v;;0;} is the singular system of W, that is,

Wu,; = o;v;, Wy, = o,u;.
Then

Radapt(Q)rtrue Radapt( )WTdtrue

= Z (o2 Rad'\.pt (dtruea vz)u

= Z JflafR?zdapt (012) (dtrue, v’i)ui .

i=1

Note that AR22Pt(\) — 1 as a — 0, so

ad b( E: + — ot
R AP Ttrue ? U dtrucavz U =WTdiyrye =77

Theorem 2.3. Ifa:=a(n) — 0 and “?vli) — 0 as ||n]| — 0, then r@ := RAaPYH(P)F — p+,

Proof.  We have the following estimate from Lemma 2.1 and Lemma 2.2 that

I = r ¥l <l = vl + e — ¥

L V2|

a .+
S~ 1va + |Ir* — 27|
Since a(n) — 0 and %‘L’—; — 0, hence ||r* - 71| — 0 (from Lemma 2.2). Thus,
re —rt.
Remark 2.4. It is well-known that the Tikhonov regularization method is convergent as

a(n) — 0 and Ji;(—,% — 0 (as ||n|| — 0) and that the adaptive regularization method is convergent

as long as a(n) = ||n||*, k < 4.

3 Regularity under an a Priori Strategy

In this section we analyze the regularity of the adaptive regularization method. First we have
the following lemma.

Lemma 3.1.  Assume that r* # 0. Then for ||n|| > 0 there exists a(n) such that
I =¥ = [In|l/ Ve (13)
In addition, a(n) is strictly monotonically increasing and continuous with

| llllm Oa(n) =0, ' lllim a(n) = oo,

Proof. Noting that Wr* = d;,,., we have

r T = —a(®% + al)™!
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By Definition 1.1, we denote E)\ as the spectral family of ®, Then
00 2
2= _Voea® +|12
N R A =

Defining

o0 2
o) = [ B P - I,

and noting that 7+ € Null(W)! and r* # 0, we then have ¢(q) is monotonically increasing
and continuous with

limoqi)(a) = —|n|?, Jim () = oco.

This completes the proof.
If we further have some a priori knowledge of the solution, say, 7T € Range(®*), 0 < v < 1,
we have the following estimate of the order of convergence.

Theorem 3.2.  Assume that r* € Range(®¥), 0 <v < 1. If [ d||Exr*|? = O(u?), then
[r* —r%|| = O(a?).

Proof. First we have the estimate

it = [ B
o (a+22)?2

~/ﬁ—iimWEWW+/m*ﬁimeﬁw
GRS Ot va (a4 a2z AT

Since

Va Va o2 va
iﬂ w@ﬁWsA @xyﬁw&#WsA d|Exzt?

o0 a2 1 o0
0< ‘_wde+2<—/dE+2
e LY Y B N
and [ d|[Exrt||* = O(u?*), then

Ir* = r¥]| = O(a?).

Note that in applications the data is usually contaminated by noise. For example, in re-
mote sensing, the data obtained is usually perturbed due to long-term exposure through the
atmosphere where turbulence in the atmosphere gives rise to random variations in the refractive
index. Therefore, the data d contains noise. Suppose the noise in d can be controlled by the
noise level ||n||, that is,

d ~ derue| < [Inf|-

Then we can show that the adaptive regularization can really approach the regularity.

Theorem 3.3. Under the condition of theorem 3.2, we have

. o _dv
sup{inf [[r* — 2| : 14— diraell < [Inl]} = O(nl| 757, (14)

Proof. Suppose r* # 0 (the result is obvious as r* = 0). From Lemma 2.1 and the triangle
inequality, we can show that for all a > 0 and d, ||d — dire|| < |0,

¥27n||
1o

I =< e =+ (15)
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Now let @ = a(n) be as in Lemma 3.1 and define

I~ )
ey = ———

Then

and o can be expressed as

Hence from (15) we have

\4/2—711"“)
4¥/a

sup{inf Ir* — r3|l : |ld - dyuel] < [In)|} = o(nra — ]+

:O(%) =0([n 4Jﬁd‘ﬁ)

4 Regularity under an a Posteriori Strategy

From the former section we know that the optimal order of convergence is obtained if the choice
of « = a(n) is in an a priori way, ie., a = (Hn”c;l)ﬁ. However this is not applicable in
practice. Practically, an a posteriori way will be workable. We use the widely used Morozov’s
discrepancy principle, that is, a = a(n) should be chosen as

a(n) :==sup{a > 0: ||d - Wre| < 7|} (16)

with T > 1 being another parameter.
Denoting gq(A) = 1 — AR242Pt()), we find that 92(A) < B < 1, where 3 is the supremum of
9a()). We also note that g,(\) — 0 as a — 0, so

ld—Wrg)) =lld — W(@2 + al) a7
=T - RGP WWTYWWT)d| <¢ as a — 0,
where ¢ is a small positive number. This shows that (16) can be satisfied.
In the following we show that the adaptive regularization method with the discrepancy

principle as the stopping rule can approach the regularity. The results rely on the property of
the function

fa(A) = A”+%q2a()\), 0<rv<l.

A easy calculation shows that fa(A) can be maximized if and only if A = \*, where

A= (Cl,a)%

with C, = §252. So the maximum value of fa(X) is

fR2X(\) = D, "3 (17)

2u41
s _2c,3
with Dl/ = _CJ;H-T

Now we give the regularity result:
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Theorem 4.1.  Assume that r* € Range(®¥), 0 < v < 1. If a(n) is chosen by the above

discrepancy principle, then
a 2
llrss =¥l = O(lIn]|7+7).

Proof. Let rt = ®"w, w € Range(®”), 0 < v < 1. Then by the triangular inequality
% = 720 < =7+ e =),

we need to estimate the upper bounds of |[r® — r®|| and ||r® — 71|
By Hoélder’s inequality, we have

Ir® =t =[[(®* + al)BTFirye — 7|
=[(@* + aD@*r" — 17|
=(|®" g (®)w||

< 0o (@) || 77 |7 ga (B)8*w]| 757
= ga (@) || T [Wr™ = dicuel| 757
(BT [Wr® = dopue| 57

Recalling that

[Wr = dirgel| =W (r® = 17) ~ (derue — d) + (Wry — d)
=||W R22p8 (@)W (d — dirue) — (d — derwe) + (Wrs — d)]
<ga(WWT)(d = derue)|| + [|[Wrsy — d]|
<Blinfl + rinl
=(8+7)|nl,

we obtain

1 _2v
||7‘a - 7‘+|| S(I@||w||)2u+l ((/8+ T)||n||)2u+l
<O(||lw|| =7 || 25T).

Now let v = 2a. By the discrepancy principle (16), we have
lg(WWT)d|| = lld — Wrl[| > 7]n].
By the above inequality and (20), we have
ldsene = Wr7|| = 7[Inll = Blin]l = (= = B)nll;

where 7 — 8> 0 since 7 > 1, 0 < 8 < 1. Thus

1 1 i v
Il < 5o = W17 = 25 %3, (W W)
By (17), the above inequality gives
1 2utl
< ——D,a 4 .
ol < ——5Pver o]

This indicates that , \
a> B, - gllwl|” 7 ||n[| 7T,

(13)

(19)

(20)

(21)
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where E,, 3 is a constant with respect to v, 7 and 3.
Recalling Lemma 2.1, we have

V2T, o

1
I — 7l < Y2 o, (25)
By (24) and (25), we obtain that
V27 1 1 20
I = 7% < == (Eurg) 3w F5 [Inlf =7 (26)

By (19), (22) and (26) we obtain (18).
5 Conclusion

This paper establishes the convergence and regularity results of the adaptive regularization

method. We find that for the a priori choice of the regularization parameter, the rate of
4

convergence is O(||n||®+7) for some 0 < v < 1. However, for the a posteriori choice of the

regularization parameter ¢, the optimal convergence rate is O(]|n|| 7%) This indicates that,
sometimes, if some a priori knowledge-based information is known in advance, then we can get
better results. This phenomenon is particular useful in remote sensing (see [3]), where the a
priori information is based on the historical data constraints on the solution, i.e., the retrieved
land surface parameters. Ryzhikov and Biryulinal®l pointed out that this method was very
important in deconvolution problems which arised frequently in geophysical sciences.
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