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ccelerating migration deconvolution using
nonmonotone gradient method
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ABSTRACT

New solution methods were considered for migration de-
convolution in seismic imaging problems. It is well known
that direct migration methods, using the adjoint operator L*,
yield a lower-resolution or blurred image, and that the linear-
ized inversion of seismic data for the reflectivity model usu-
ally requires solving a �regularized� least-squares migration
problem. We observed that the �regularized� least-squares
method is computationally expensive, which becomes a se-
vere obstacle for practical applications. Iterative gradient-de-
scent methods were studied and an efficient method for mi-
gration deconvolution was developed. The problem was for-
mulated by incorporating regularizing constraints, and then a
nonmonotone gradient-descent method was applied to accel-
erate the convergence. To test the potential of the application
of the developed method, synthetic two-dimensional and
three-dimensional seismic-migration-deconvolution simula-
tions were performed. Numerical performance indicates that
this method is promising for practical seismic migration
imaging.

INTRODUCTION

Standard seismic migration methods give distorted images of the
ubsurface, even with an accurate velocity model because of limita-
ions in bandwidth, recording time, and aperture of the seismic-re-
ection experiment.Application of inverse methods can improve the
esolution of seismic images by compensating for these distortions
Treitel and Lines, 2001�. Migration deconvolution is one possible
pproach because it uses knowledge of the resolution kernel of the
eismic experiment to compensate for the effects mentioned
Schuster, 1997a, b; Hu and Schuster, 1998; Hu and Valasek, 1999;
u and Schuster, 2000; Hu et al., 2001; Gelius et al., 2002; Sjøberg et

l., 2003�. However, it is well known that deconvolution approaches
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o this problem are ill-posed, rendering the results sensitive to noise
Tikhonov andArsenin, 1977�. Least-squares migration �LSM�, par-
icularly with the addition of regularization, is another promising ap-
roach to improving the resolution of migrated images �Schuster,
997a; Nemeth et al., 1999; Sacchi et al., 2006; Wang et al., 2009�.
he key to successful, iterative least-squares migration is the optimi-
ation strategy �VanDecar and Snieder, 1994; Treitel and Lines,
001; Bevc et al., 2007�. Because least-squares migration has a cost
pproximately equal to two migration applications per iteration, it is
ssential to control the number of iterations required to reach a satis-
actory image �Schuster, 1997a, b; Nemeth et al., 1999; Sjøberg et
l., 2003; Wang et al., 2009�. We have adapted a gradient-descent op-
imization technique described by Barzilai and Borwein �1988� to
east-squares seismic migration. One key feature of this approach, as
pposed to the typical steepest-descent or conjugate-gradient �CG�
pproaches, is that it does not have monotonic convergence. The ad-
antage of relaxing the requirement that each iteration must have a
ower residual than the previous step is that the method can converge
o a lower overall value of the objective function in fewer overall it-
rations. This is important for least-squares migration because one
ishes to keep the overall number of iterations as small as possible.

ITERATIVE REGULARIZATION SOLVERS FOR
MIGRATION DECONVOLUTION AND

INVERSION IN SEISMIC IMAGING

igration deconvolution

In Schuster �1997a, b� and Hu and Schuster �1998�, the term mi-
ration deconvolution describes inverting the blurring operator
rom the migration image and thus creating a sharper image of the re-
ectivity. Nemeth et al. �1999� show that by modeling and migration
f synthetic data, we can understand better the impact of the noise
e.g., recording footprint�. For example, one might specify source-
eceiver geometry and a reflectivity model m, compute synthetic
eismic data d using some modeling operator L, and then migrate
hese data to obtain the migrated section mmig �Claerbout, 1985;
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chuster, 1997a, b; Hu and Schuster, 1998; Hu et al., 2001; Yu et al.,
006�:

mmig�L*d�L*Lm, �1�

here mmig is the blurred migration image of the reflectivity; L*L is
he integral blurring kernel operator, which is represented by a so-
alled resolution function �or point-spread function�; and the adjoint
perator L* is the integral migration operator. A more general blur-
ing equation is given in Gelius et al. �2002�, where they formulate
he same problem in different form. The resolution function is im-
ortant for optimization of survey planning, i.e., defining aperture,
ampling, and location. It also can be used to guide the selection of
igration parameters �frequency band, frequency sampling, shot/

eceiver sampling, image sampling� for a well-resolved image
Lecomte and Gelius, 1998�. However, the inverse of the operator
*L should be only approximated �Guitton, 2004; Valenciano et al.,
006�.

radient-descent least-squares migration

Schuster �1997a�, Nemeth et al. �1999�, and Sjøberg et al. �2003�
se the conjugate-gradient method for least-squares migration. A
rototype of the CG algorithm is outlined in Table 1. Nemeth et al.
1999� introduce preconditioning techniques for regularizing this in-
erse scheme. As pointed out by Schuster �1997a�, LSM is expen-
ive because each iteration requires about the same computational
ost as two standard migrations. Therefore, a key enabler of practical
mplementation is to find fast and efficient computational methods
or implementing LSM �Nemeth et al., 1999�.

We consider the minimization of a “regularized functional,” i.e.,

J��m�ª 1
2 �Lm�d�2�

1
2��Dm�2→min, �2�

here “ª” means defined by, D is a �semi-� positive-definite-
ounded scale operator, and � � �0,1� is the regularization parame-
er. A very simple steepest-descent method can be applied to solve
quation 2, i.e.,

mk�1�mk��ksk, �3�

here sk��gk, gk is the gradient of J�, and �k is the step size, which
an be obtained by line search. If we set � �0 and restrict step size
k to a constant in the interval �0,�L��2� in each iteration, we obtain
special gradient method known as the Landweber iteration �Wang,

able 1. Conjugate-gradient method for migration deconvolut

tep 1. Given initial point m0�0: compute g0�g�m0���LTd,
nd set � � 0.

tep 2. If �g0 � �� , output m0, STOP; otherwise, set s0ª�g0, an

tep 3. Compute next iteration point:

�kª�gk
Tsk / ��Lsk�T�Lsk����Dsk�T�Dsk��,

mk�1ªmk��ksk,

gk�1ªgk��kLTLsk���kDTDsk

	 k
FR
ª �gk�1�2 / �gk�2,

sk�1ª�gk�	 k
FRsk.

tep 4. If �gk�1��� or k exceeds the maximum iterative steps, o
otherwise, set kªk�1, GOTO Step 3.
Downloaded 18 Aug 2010 to 128.59.62.83. Redistribution subject to S
007�. However, these methods are slow in convergence and diffi-
ult to use on practical problems. One might notice that the standard
igration is just one step of steepest-descent iteration if we set m0

0, � �0, and choose step size � as unity. It is well known that one
tep of gradient iteration is generally far from convergence, hence
he resolution of standard migration imaging is low.

fast-iterative migration-deconvolution solver:
onmonotone gradient method

We apply a nonmonotone gradient method, called the BB method,
escribed by Barzilai and Borwein �1988� to seismic migration-de-
onvolution imaging by solving equation 2. From now on, we as-
ume that the seismic modeling is formulated in finite space after
iscretization and the norm �.� is in the �2 sense. We use LT to repre-
ent transpose of a matrix L and �·,·� the inner product of two vectors.
et mk be the k-th iteration and gk the gradient of J� at mk, where gk

g�mk��LT�Lmk�d���DT�Dmk�. The nonmonotone gradi-
nt method aims to accelerate the convergence of the steepest-de-
cent method and requires few storage locations and inexpensive
omputations. The BB method incorporates a quasi-Newton proper-
y with the gradient method to obtain second-order information
bout objective function J��m�. Specifically, it approximates the
essian �2J��mk� by � kI and solves the two minimization problems
k�argmin��yk�1��Isk�1� and � k�argmin���Iyk�1�sk�1�.
his leads to two choices of the step size � k

� k
BB1�

�sk�1,sk�1�
�sk�1,yk�1�

, � k
BB2�

�sk�1,yk�1�
�yk�1,yk�1�

, �4�

here yk�gk�1�gk, sk�mk�1�mk. Note that from equation 4,
he inverse of the scalar � k is the Rayleigh quotient of A or ATA at the
ector gk�1, where A�LTL��DTD. Hence, step sizes inherit the
egularized spectrum of the regularization model. Therefore, we be-
ieve that this method is very efficient for solving ill-posed convex-
uadratic-programming problems �Wang and Ma, 2007�.

We consider an extremely ill-conditioned linear algebraic N-
imensional problem

Lminput�dobserve�dtrue�noise,

here L� ��ij�N�N, �ij�1 / �i� j�1�; minput�i��
1
2 exp��2� t�i��,

�i��a�h� i,i�0,1,¯ ,N�1, hi� �b�a� / �N�1�, and a�
3.14, b�3.14; noise� �n0,n1,¯ ,nN�1�T;. dobserve�i��dtrue�i�

�noise�i��� j�0
N�1�ijminput� j��ni. Choosing d

as the identity, gradient g�m� of the functional
J��m� can be computed easily as g�m�� �LTL
��I�m�LTdobserve. In this simulation, the value
of N �the number of unknowns� is set to 4000,
leading to an extremely ill-conditioned system of
equations. The condition number for L is up to
1.2517�1022. Using the BB nonmonotone itera-
tion, the nonmonotonicity of the object functional
J��m� can be seen vividly in Figure 1. The mono-
tonicity of the object functional J��m� for steep-
est-descent and CG methods are shown in Figures
2 and 3, respectively. The efficiency comparison
between steepest-descent, BB nonmonotone, and
CG methods is listed in Table 2. This example re-
veals that the BB nonmonotone iterative method
is superior to the steepest-descent and CG meth-

e � � �0,1�,

.

k, STOP;
ion.

choos

d kª0

utput m
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Gradient method for migration deconvolution S133
ds. This observation motivates us to apply BB nonmonotone itera-
ion to the seismic-migration-deconvolution problem.

In our algorithm, the initial search direction is the negative gradi-
nt direction. In addition, we use the following stopping condition in
ur numerical tests:

�gk����g1�, �5�

here � � 0 is a preassigned tolerance. Now we state our algorithm
onveniently for solving realistic seismic inverse problems in
able 3.
The regularization property of the algorithm is controlled by regu-

arization parameter � and dominant parameter �. The role of � is to
ontrol further iteration at preassigned precision. Choice of � de-
ends on the degree of ill-posedness of problems. Our algorithm
ith lower values of � could yield better approximation to the solu-

ion, but it might take more iterative steps and more CPU time in the
mplementation. The algorithm with larger values of � can be imple-

ented with fewer iterative steps and less CPU time, but could lead
o insufficient approximation. From our simulations, we recommend
hoosing � between 1.0�10�5 and 1.0�10�2.

Vital advantages of the nonmonotone BB iterative method are its
implicity of implementation, fast nonmonotonic convergence, and
xtremely low memory requirements. The BB method was designed
riginally for well-posed quadratic programming problems which
ave received more attention in recent years �Yuan, 2008�. However,
he BB method is applicable to ill-posed image-restoration prob-
ems, and Wang and Ma �2007� demonstrate it to be a regularization

ethod. These observations make us believe the algorithm will be
ery useful for solving large-scale, ill-posed migration-deconvolu-
ion problems.

NUMERICAL SIMULATIONS

Our simulation consists of two steps. First, a simulated seismic
ignal �input signal� is generated by forward modeling of acoustic
ata. Then, the input seismic signal is processed through our algo-
ithm and the retrieved distribution signal is compared with the input
ne. Note that d is the observation, thus different kinds of noise also
ould be recorded besides the true signal. Here, we consider a simple
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ase only, i.e., we assume that the noise is mainly additive Gaussian
oise, i.e., d�dtrue�
 · rand�size�dtrue��, where 
 is the noise level
n �0,1�, rand�size�dtrue�� is the Gaussian random noise with the same
ize as dtrue.

wo-dimensional simulations
The first example is a 2D migration-deconvolution problem. We

ssume receivers are uniformly distributed on a line with maximum
ine length of 1200 m. A sampling interval of 30 m in the
-coordinate is assumed. We use a Ricker wavelet with central fre-
uency of 27 Hz that generates 40 traces of seismic data; the back-
round velocity is homogeneous with c�3000 m /s, and the time
ampling interval is dt�4 ms. In this simulation, grid dimensions
f the model are 1200�1200 points with x and z gridpoint spacing
f dx�dz�30 m. Nine point scatterers are buried at depths from
70 to 870 m. The seismogram from the nine-point-scatterer model
ith noise level equal to 0.005 is illustrated in Figure 4. It is seen

learly that noises are very strong and parts of the data are contami-
ated by noise.
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S134 Wang and Yang
Numerical simulations are made for the CG-based LSM algo-
ithm �Table 1� and the fast gradient algorithm �Table 3�. The noise
evel 
 for both algorithms is assumed to be 0.005. For the CG-based

able 2. Comparison of CPU time (s), iterative steps, and rm
ast nonmonotone-gradient method with conjugate-gradient a
teepest-descent method.

Noise level 0.005 0.01

PU
ime �s�

Nonmonotone gradient 3.6094 3.67

Steepest descent 27.0938 27.00

Conjugate gradient 25.1094 25.28

teps

Nonmonotone gradient 50 50

Steepest descent 200 200

Conjugate gradient 40 40

MS
rrors

Nonmonotone gradient 0.0016 0.00

Steepest descent 0.0036 0.00

Conjugate gradient 0.0013 0.00

able 3. Nonmonotone-gradient method for migration deconv

tep 1. Initialization: Given initial point m0, tolerance � � 0, set
k.

tep 2. Check whether the stopping condition holds:
f equation 5 is satisfied, STOP; otherwise, set sk��gk

tep 3. Compute a BB step: � k by equation � k
BB1 or � k

BB2.

tep 4. Update the current iteration point by setting mk�1�mk�
rojection.

tep 5. Compute a new search direction sk�1��gk�1 and go to

tep 6. Loop: kªk�1, and go to Step 2.
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igure 4. Seismogram from the nine-point scatterer model with
oise level equal to 0.005.
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SM algorithm, the iteration process is stopped at 43 iteration cy-
les. For the fast gradient algorithm, the iteration process is terminat-
d after 34 iteration cycles. The CPU time costs for LSM and for the

fast gradient algorithm are 12.9688 s and
5.7969 s, respectively. The fast algorithm con-
verges for all noise levels in fewer than 40 itera-
tive steps. The CG-based LSM algorithm con-
verges before reaching the maximum iterative
number for small noise levels. For large noise lev-
els, 40 iteration cycles are not enough for ensur-
ing convergence of LSM. However, more itera-
tion cycles induce more CPU time.

Precision of the approximation is character-
ized by the root mean-square �rms� error

RMSE��1/�MN��i,j�dcomp�xi,tj��dmeas�xi,tj��2/�dcomp�xi,tj��2.

This describes the average relative deviation of
retrieved seismic signals from true seismic sig-
nals. In the above expression of rms error, dcomp

refers to retrieved �computed� signals, dmeas refers
to synthetic �measured� signals, M is the trace
number, and N is traveltime length. Simulation
results are shown in Table 4. Both algorithms
yield the same values of rms error for different
noise levels. This indicates that both algorithms
are stable for solving LSM deconvolution prob-
lems. Comparison of computational cost for re-
covering the point-scatterer model also is record-
ed in Table 4. It is clear from the table that our
method needs less CPU time than LSM for a suc-
cessful inversion. Therefore, the fast gradient
method supplies us with another choice when
solving the LSM model.

Simulation results in Figures 5–7 represent, re-
spectively, the standard migration image, the

east-squares migration-deconvolution image, and the fast migra-
ion-deconvolution image, for a noise level equal to 0.005. It is clear
hat the fast gradient-descent migration-deconvolution method
ields the best resolution result because of its fast convergence prop-
rty.

hree-dimensional simulations

We show the applicability of our algorithm for 3D migration-de-
onvolution imaging problem. We perform experiments on a ten-
oint scatterer model. These scatterers are buried at a depth of
000 m. An impulsive source wavelet with central frequency of
0 Hz is used to generate the data. Then the data are a superposition
f ten hyperbolic events. We assume receivers are distributed uni-
ormly on a 21�21 orthogonal grid with a sampling interval of
0 m in the x-direction and 20 m in the y-direction. Background ve-
ocity is homogeneous with c�5000 m /s, and the time sampling
nterval is 1.7 ms. Grid dimensions of the model are 21�21�6,
ith x, y, and z gridpoint spacing of 40 m, 20 m, and 200 m, respec-

ively.
Results for the standard migration, LSM deconvolution, and fast
igration deconvolution when noise level equals 0.01 are illustrated

n Figures 8–10, respectively. To show convergence characteristics
f our algorithm, we plot the relative errors in each step for a noise
evel equal to 0.01 in Figure 11. For comparison, we also plot the rel-

s of the
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ative errors of the LSM in each step for a noise
level equaling 0.01 in Figure 12. To illustrate the
computational efficiency, we also apply our
method to a fine-gridded synthetic problem with
dimensions 41�41�6, which yields 10,086 un-
knowns. The comparison of computational cost
for the ten-point scatterer model is given in Table
5. Because CPU time is similar for the noise case
and the noise-free case, we show only the values
of the noise-free case. Table 5 indicates that our
method needs approximately one-half the CPU
time of the LSM to get similar migration-decon-
volution results. Hence, our method would be
promising for practical applications.

s of our

s errors

Fast
method

0.0135
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igure 7. The fast migration-deconvolution image for the nine-point
catterer model with noise level equal to 0.005.
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igure 8. The standard migration image for the ten-point scatterer
odel with noise level equal to 0.01.
able 4. Comparison of CPU time (s), iterative steps, and rms error
lgorithm with LSM for 2D migration-deconvolution imaging.

CPU time �s� Steps rm

oise level LSM
Fast
method LSM

Fast
method LSM

9.8906 5.5938 34 34 0.0135

.001 12.5938 4.3225 40 27 0.0135

.003 12.7813 4.7344 42 28 0.0135

.005 12.9688 5.7969 43 34 0.0135

.01 13.7812 6.2656 44 39 0.0135
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igure 5. The standard migration image for the nine-point scatterer
Least-squares migration image
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igure 6. The least-squares migration-deconvolution image for the
ine-point scatterer model with noise level equal to 0.005.
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DISCUSSION

Our simulations reveals that CG-based LSM deconvolution and
he fast nonmonotone gradient descent method yield better resolu-
ion images than standard migration. For n-dimensional quadratic
rogramming problems, the CG method can converge in a finite n
teps. However, CG iterations should not be driven that far for ill-
osed deconvolution problems. At the same time, the CG iterations
hould not be terminated at a very early stage because earlier termi-
ations could filter out noise components of the solution correspond-
ng to the small singular values of matrix operator L.

In our comparison, we do not consider preconditioning of the reg-
larized conjugate-gradient iteration. We give a theoretical explana-
ion as follows. We assume that D and L are p�n and m�n matri-
es, respectively. By singular value decomposition of the matrix pair
L,D� �Golub and Van Loan, 1989; Hanke and Hansen, 1993�, we
ave

L�U��a 0

0 In�p
	W�1

nd

D�V��b 0�W�1,

here U� �u1, . . . ,um�, W� �w1, . . . ,wn�, V� �v1, . . . ,vp�, I is the
dentity, �a�diag�� 1

a, . . . ,� p
a�, �b�diag�� 1

b, . . . ,� p
b�, and i

1,2, . . . ,p. Denoting the Tikhonov filter function as

able 5. Comparison of CPU time (s) of our algorithm with
SM for ten-point scatterers model in 3D case.

SM Fast method Problem scale

25.7500 68.0000 nx�ny�21; nz�6;

dx�40; dy�20

629.1250 722.6406 nx�ny�41; nz�6;

dx�40; dy�20
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igure 12. Conjugately monotonic reduction of relative errors of the
SM with noise level equal to 0.01.
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odel with noise level equal to 0.01.
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f����� �� ����1, � �0

nd defining

� i�
� i

a

� i
b ,

he approximate solution m� can be written as

m� � �
j�1

p

� j f
��� j

2��d,u j�w j� �
j�p�1

n

�d,u j�w j .

t is seen clearly from the above expression that the regularized solu-
ion actually consists of two parts. The second part �i�p�1

n �d,u j�w j is
ot affected by regularization. Therefore, to maintain the filtering
roperties of the CG iteration for regularized minimization problem
equation 2�, it is required that components of the data correspond-
ng to the very small singular values of L should remain in a sub-
pace exclusively spanned by the left singular vectors. This signifies
hat the preconditioner should consist of two parts: one part should
recondition only the well-posed component of L, and the other
hould behave like an identity matrix applying to the ill-posed com-
onent of L. Such a requirement is not being satisfied for conven-
ional preconditioners that have been suggested so far in literature
or well-posed problems. Therefore, we believe choosing a proper
reconditioner for seismic ill-posed inverse problems in imaging re-
ains an interesting topic.

CONCLUSIONS

The benefits of treating the seismic migration process as an in-
erse problem are improved resolution of images, compensation for
rregularities in acquisition geometries, and treatment of variations
n illumination due to velocity-model complexity. However, itera-
ive least-squares migration is expensive, requiring at least the cost
f two migrations per iteration. Therefore, any method that can re-
uce the number of iterations required to converge to an improved
mage and also help deal with the ill-conditioned nature of the LSM
nverse problem is worth examining. The nonmonotone BB method
etailed here has the useful properties: it converges quickly and al-
ows straightforward implementation of regularization schemes.
his method could be the basis for even more advanced nonmono-

one methods applied to the least-squares migration/inversion prob-
em. The examples we show, although only synthetic, show the pow-
r of this particular gradient-descent method and large-scale imple-
entation of this technique is straightforward.
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