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Abstract The core problem in seismic exploration is to invert the subsurface
reflectivity from the surface recorded seismic data. However, most of the seis-
mic inverse problems are ill-posed by nature. To overcome the ill-posedness,
different regularized least squares methods are introduced in the literature. In
this paper, we developed a preconditioning non-monotone gradient method,
proved it converges with R-superlinear rate and applied it to seismic decon-
volution and imaging. Numerical examples demonstrate that the method is
efficient. It helps to improve the resolution of the seismic inversions.

Keywords Ill-posed problem · Regularization · Non-monotone gradient ·
Preconditioning · Seismic inversion

Mathematics Subject Classifications (2010) 65J20 · 65J22 · 65K10

1 Introduction

In the Earth’s subsurface, different layers have different impedances. The
reflection seismic exploration is a method of exploration geophysics that uses
the principles of seismology to estimate the properties of these layers from
reflected seismic waves. The purpose of seismic inversion is to speculate the
spatial distribution of underground strata structure and physical parameter
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by using seismic wave propagation law. Meanwhile, restoring the seismic
reflectivity is a main problem. After linearization and by ignoring the source
and receiver signatures, the forward model for representing a seismic imaging
process is usually written as [1, 24]

Lm = d, (1)

where L is the forward modeling kernel operator; m is the (singular)
fluctuations in the earth’s acoustic properties with respect to an appropriately
chosen smoothly varying background velocity model (e.g., a constant velocity
in respective layers). These fluctuations are referred to as the model or
reflectivity and seismic imaging aims to recover both the locations and the
relative amplitudes of the velocity fluctuations from seismic data d.

Equation 1 can be solved by finding a least-squares error solution with
smallest norm, i.e., solving a problem

min
m

J[m] := 1
2
‖Lm − d‖2, (2)

such that the norm ‖m‖ takes the minimum. This is equivalent to solving a
normal equation

L∗Lm = L∗d, (3)

where L∗ is the adjoint operator of L defined by (x, Ly) = (L∗x, y) for any
functions x and y.

A naive approach for finding the reflectivity model m is by

m = (L∗L)−1L∗d. (4)

It is evident that if L∗ is an approximate inverse to the forward operator L,
then the reflectivity model can be obtained by m = L∗d. This process in
seismic exploration is called the migration [37]. However, for seismic imaging
problems, due to limited bandwidth and limited acquisition spaces, the seismic
images obtained are blurred, and then direct inversion may cause distortion
on the low-frequency component and the high-frequency component as well.
The long-standing seismic migration methods give distorted images of the
subsurface, even with an accurate velocity model because of limitations in
bandwidth, recording time, and aperture of the seismic-reflection experiment.
Furthermore, in the Hadamard’s sense, it is known that deconvolution and
inversion are ill-posed problems, and hence the least-squares results inherit
intrinsic instability and multiplicity [25].

In addition, we must keep in mind another drawback of the least-squares
method: huge computational cost; for a large scale problem, unless powerful
methods are found, it is difficult to solve the inverse problem. Therefore we
need much effort to improve the solvability of the problem.

A quick survey from literature shows that there exists a large amount of
methods to solve different geophysical inverse problems, e.g., the damped
least-squares solution method [12, 15], the trust region methods [35], Lie
group method [13], Bayesian statistical inference in seismic data processing
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[24, 28, 29], the singular value decomposition [1, 11], the iterative algorithms
for implementation of least-squares problems [19, 20, 26], the nonstationary
seismic deconvolution via the Gabor transform for source waveform [14], the
mollification methods, Backus–Gilbert method [2, 3, 17], and also the long
standing migration problem with its improvements [18, 23, 30, 41]. However,
it is observed that the convergence of the iterative methods may be very slow
[31] and a suitable optimization algorithm is needed and must be applied many
times [27]. Though the efficiency of a particular iterative method exists, it may
not be feasible for large scale seismic inversion problems. As argued in [22],
efficient numerical optimization methods for large scale problems are urgently
needed. Furthermore, as mentioned in AGU General Assembly that high
fidelity algorithm and high-end computing will be the task for next generation
seismic imaging [5]. This motivates us to devote ourselves to studying powerful
methods for solving large scale numerical seismic inversion problems.

In geophysical applications, e.g., migration imaging, simple and fast con-
vergent methods are always desirable. It is well known that the gradient-
based method, e.g., the steepest descent method, is simple in iteration and low
memory because of the second-order derivative information of the objective
function of the regularized functional is not required. To improve the per-
formance of this simple method and applied it to practical problems, much
more attention has been paid in recent ten years [4, 6, 7, 33, 34, 43]. This
motivates us to consider applying the gradient-based method to seismic signal
recovery problem. In particular, we develop a non-monotone gradient method
with preconditioning technique which is demonstrated to have the advantages
of fast convergence and easy to perform for large scale ill-posed inversion in
seismic imaging.

The outline of the paper is as follows. In Section 2, we briefly mention the
regularization model. Then in Section 3, we apply the non-monotone gradient
descent method to solve the regularizing minimization model. Convergence
analysis of the non-monotone gradient descent method in Rayleigh type is
performed. Preconditioning technique is addressed in detail in Section 4. In
Section 5, we give several numerical simulations. Examples on multichannel
image deblurring, layered velocity model and migration deconvolution are
illustrated. Potential usage of our methods and issues for field applications are
discussed in Section 6. Finally in Section 7, a conclusion is made.

2 Regularization

A powerful method for solving the ill-posed problem is the Tikhonov regular-
ization [25], which refers to solve a minimization of a “regularized functional”

Jα[m] := 1
2
‖Lm − d‖2 + α�[m], (5)

where �[·] is the so-called Tikhonov stabilizer, that is usually preassigned by
users, and α ∈ (0, 1) is the regularization parameter. If �[m] = 1

2‖Dm‖2, where
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D is a positive (semi-)definite bounded scale operator, then the minimizer of
Jα[m] is

m = (
L∗L + αD∗ D

)−1
L∗d, (6)

the solution of the Euler equation (L∗L + αD∗ D)m = L∗d. For solving (6),
several methods such as LU decomposition, singular value decomposition and
QR decomposition can be used [32, 39]. However any direct methods should
be avoided. Instead, iterative solvers are preferred for geophysical inversion
problems as the scale of the problems is usually large. And the fast non-
monotone gradient method [33, 34] are iterative methods that can be employed
to find the minimizer of the regularized minimization problem (5).

3 Iterative regularization: non-monotone gradient iteration

Iterative regularization methods are more adaptable for large scale prob-
lems in applied sciences. The well-know iterative regularization methods are
Fridman–Landweber iterative methods [10, 38]. And many optimization meth-
ods can be regularized for solving practical inverse problems, e.g., regularizing
Gauss–Newton method, trust region method, steepest descent method and
conjugate gradient method [32, 35]. We recall that the gradient-based method
is simple in iteration and low memory because of the second-order information
of the objective function of the regularized functional is not required. There-
fore, we pay attention to the gradient method and study the improvement of
its performance for geophysical exploration problems in this paper.

In the following, we assume that the problem is formulated in finite spaces
and accordingly the adjoint of the operator is transferred to transpose of the
operator. There are several highly cited gradient methods in the literature.
Perhaps the simplest and the easiest one is the steepest descent method

mk+1 = mk + ωksk, (7)

where sk = −gk, gk = g(mk), g(m) is the gradient of the function Jα[m] and ωk

the steplength which can be obtained by line search, i.e., optimal ω∗
k satisfies

ω∗
k = argminω Jα

(
mk + ωsk

)
,

where the notation argmin denotes minimizing a function with specific ar-
gument. However, the steepest descent method is slow in convergence and
zigzagging after several iterations [42]. The poor behavior is due to the optimal
choice of the step size and not to the choice of the steepest descent direction
gk. If we restrict the steplength ωk to a constant value in the interval (0, ‖L‖−2)

at each iteration, we obtain a special gradient method which is known as the
aforementioned Fridman–Landweber iteration

mk+1 = mk + ωsk. (8)
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However this method is quite slow in convergence and is difficult to be used
for most of practical problems [10, 32, 38]. The poor behavior lies in that both
the step size ω and the gradient descent direction gk are not optimizing.

Instead of using the negative gradient in each iteration, the non-monotone
gradient methods were developed recently [6, 7, 43], meanwhile the Barzilai–
Borwein method was one of the most well-known. This method was first
proposed for solving the unconstrained optimization problem [4]. In this paper,
we propose to apply the nonmonotone gradient method to ill-posed seismic
signal retrieval problems by solving the following minimization problem

min Jα[m]. (9)

The non-monotone gradient method is aimed to accelerate the convergence
of the steepest descent method and requires few storage locations and inex-
pensive computations. Barzilai and Borwein incorporated the quasi-Newton
property with the gradient method for obtaining the second order information
of the objective function Jα[m]. Specifically, they approximated the Hessian
∇2 Jα[mk] by νk I and based on the secant condition, they considered two min-
imization problems νk = argminν‖yk−1 − ν Izk−1‖ and νk = argminν‖ν Iyk−1 −
zk−1‖, where yk−1 = gk − gk−1 and zk−1 = mk − mk−1. This leads to the two
choices of the stepsize νk

ν1
k =

(
gk−1, gk−1

)

(
gk−1, Agk−1

) (10)

and

ν2
k =

(
gk−1, Agk−1

)

(
gk−1, AT Agk−1

) , (11)

where A = LT L + αDT D. It is evident that the two choices of stepsizes inherit
the information of the gradient information from the former iteration instead
of the current iteration. Hence the stepsizes inherit the regularized spectrum
of the regularization model. Therefore we believe that this method is very
efficient for solving ill-posed convex quadratic programming problem [33].

Let {mk} be the sequence generated by the above method from initial
vectors m0 and m1. Then the gradient of the object function Jα[m] at mk

is gk = Amk − b , where A is mentioned above and b = LTd. We have for
all k ≥ 1,

gk+1 = νk

(
1
νk

I − A
)

gk. (12)

To analyze the convergence of the Barzilai–Borwein method, we can assume
without loss of generality that an orthogonal transformation is made that trans-
forms A to a diagonal matrix of eigenvalues diag(λi). Moreover, if there are
any eigenvalues of multiplicity M > 1, then we can choose the corresponding
eigenvectors so that g(i)

k = 0 for at least M − 1 corresponding indices of gk.
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It follows from (12) and using spectrum representation A = diag(λi) that

g(i)
k+1 = νk

(
1
νk

− λi

)
g(i)

k . (13)

Using the recurrence, Barzilai and Borwein prove an R-superlinear conver-
gence result for the particular choice of the stepsize νk.

Note that from (10) and (11) the inverse of the scalar νk is the Rayleigh
quotient of A or AT A at the vector gk−1. More choices for the step-lengths
can be obtained by setting a hybrid of the two stepsizes, e.g., the mean values
of any two Rayleigh ratios, and the convergence properties were obtained [44].
We consider a linear combination of the two stepsizes, i.e.,

ν
Rayleigh
k = β1

(
gk−1, gk−1

)

(
gk−1, Agk−1

) + β2

(
gk−1, Agk−1

)

(
gk−1, AT Agk−1

) , (14)

where β1 and β2 are two positive parameters. An investigation of (10) and
(11) reveals that (10) is better than (11), since ν1

k has small jumps than ν2
k has

when A is ill-conditioning. However, there is no reason that one should discard
the stepsize given by ν2

k. To make a trade-off, we choose the parameter β2
geometrically, i.e.,

β2 = β0ξ
k−1, β0 > 0, ξ ∈ (0, 1), k = 1, 2, · · · . (15)

Another parameter β1 can be set to 1 − β2. This choice of parameters assigns
more weights to ν1

k than ν2
k, however both step information inherits into the

next iteration.
It can be shown that the iteration points generated by the above method

converge to the minimal solution of Jα[m]. Similar to [44], we have the
following theorem.

Theorem 1 Let Jα[m] be given in (5) with �[m] = 1
2‖Dm‖2 and D a positive

def inite bounded scale operator and let {mk} be generated by the above non-
monotone gradient method in Rayleigh type with stepsize νk satisfying (14).
Then the sequence {mk} converges to the minimal solution of Jα[m].

Proof It is evident that A = LT L + αDT D is positive definite for α > 0.
Therefore, the orthogonal decomposition of A can be written as

A = Q	QT ,

where Q=[q1, q2, · · · , qn] is an orthogonal matrix and 	=diag(λ1, λ2, · · · , λn)

satisfying

0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λn.

For any initial vector m0, the gradient g0 = Am0 − b can be written as

g0 =
n∑

i=1

ρ
(0)

i qi,
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where ρ
(0)

i are constants, i = 1, 2, · · · , n. Using (13) we obtain for any k ≥ 0,

gk =
n∑

i=1

ρ
(k)

i qi,

where ρ
(k)

i (i = 1, 2, · · · , n) satisfy

ρ
(k+1)

i = (1 − νkλi) ρ
(k)

i =
k∏

j=0

(
1 − ν jλi

)
ρ

(0)

i . (16)

The above equation indicates that
∣
∣∣ρ(k)

1

∣
∣∣ =

∣
∣∣(1 − νk−1λ1) ρ

(k−1)
1

∣
∣∣ ≤

∣∣
∣
∣

(
1 − λ1

λn

)
ρ

(k−1)
1

∣∣
∣
∣ ≤

(
1 − λ1

λn

)k ∣
∣∣ρ(0)

1

∣
∣∣ .

The above inequality reveals that limk→∞ ρ
(k)
1 = 0. Now it suffices to proves

the following equality

lim
k→∞

ρ
(k)

i = 0, i = 1, 2, · · · , n. (17)

On the contrary, there exists a positive number δ and an integer l ∈ [1, n − 1]
such that (17) holds for i = 1, 2, · · · , l and

lim sup
k→∞

ρ
(k)

l+1 > δ > 0. (18)

For any given positive number δ̂ we have that

lim
|ρ(k)

l+1|≥δ̂,k→∞

(
gk−1, gk−1

)

(
gk−1, Agk−1

) = lim
|ρ(k)

l+1|≥δ̂,k→∞

∑n
i=1

(
ρ

(k−1)

i

)2

∑n
i=1

(
ρ

(k−1)

i

)2
λi

≤ lim
|ρ(k)

l+1|≥δ̂,k→∞

∑l+1
i=1

(
ρ

(k−1)

i

)2

∑l+1
i=1

(
ρ

(k−1)

i

)2
λi

= 1
λl+1

and

lim
|ρ(k)

l+1|≥δ̂,k→∞
(gk−1, Agk−1)(

gk−1, AT Agk−1
) = lim

|ρ(k)

l+1|≥δ̂,k→∞

∑n
i=1

(
ρ

(k−1)

i

)2
λi

∑n
i=1

(
ρ

(k−1)

i

)2
λ2

i

≤ lim
|ρ(k)

l+1|≥δ̂,k→∞

∑l+1
i=1

(
ρ

(k−1)

i

)2
λi

∑l+1
i=1

(
ρ

(k−1)

i

)2
λ2

i

= 1
λl+1

.
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Let us recall (17) holds for i = 1, 2, · · · , l, |ρ(k)

l+1| ≥ δ̂ ≥ λ1
λl+1

δ̂, hence there exists

a sufficiently large integer k̂ such that for all k ≥ k̂

ν
Rayleigh
k ≤ 11

10
1

λl+1

and
∣∣
∣ρ(k)

l+1

∣∣
∣ ≥ λ1

λl+1

δ

2
. (19)

Therefore, if (19) holds for any k ≥ k̂, we have that
∣∣
∣ρ(k+1)

l+1

∣∣
∣ =

∣∣
∣1 − ν

Rayleigh
k λl+1

∣∣
∣
∣∣
∣ρ(k)

l+1

∣∣
∣

≤ max
{

1 − λl+1

λn
,

∣
∣
∣∣λl+1

11
10

1
λl+1

− 1
∣
∣
∣∣

} ∣∣
∣ρ(k)

l+1

∣∣
∣

≤ max
{

1 − λl+1

λn
, 0.1

} ∣
∣
∣ρ(k)

l+1

∣
∣
∣ . (20)

Conversely, if (19) does not hold, we have from (16) that

∣
∣
∣ρ(k+1)

l+1

∣
∣
∣ ≤ max

{
1 − λl+1

λn
,
λl+1

λ1
− 1

} ∣
∣
∣ρ(k)

l+1

∣
∣
∣ ≤ λl+1

λ1

∣
∣
∣ρ(k)

l+1

∣
∣
∣ ≤ δ

2
. (21)

Equations 20 and 21 reveals that

lim sup
k→∞

∣
∣
∣ρ(k)

l+1

∣
∣
∣ ≤ δ

2
.

which contradicts the assertion (18). This shows the theorem to be true. 
�

Barzilai and Borwein proved an R-superlinear convergence result for the
particular choice of the stepsize νk. Since their method is a special case of
choosing the stepsize νk with formula (14), therefore, it is ready to see that the
nonmonotone gradient method in Rayleigh type is R-superlinear convergent.
We have the following results.

Theorem 2 Let Jα[m] be given in (5) with �[m] = 1
2‖Dm‖2 and D a posi-

tive def inite bounded scale operator and let {mk} be generated by the above
nonmonotone gradient method in Rayleigh type with stepsize νk satisfying
(14). Then the sequence {mk} converges to the minimal solution of Jα[m] with
R-superlinear convergence.

Proof When β1 =0 or β2 =0, the Rayleigh type method reduces to the Barzilai
and Borwein’s method. Since the Barzilai and Borwein’s algorithm is R-
superlinear convergent, hence the algorithm of Rayleigh type is R-superlinear
convergent. 
�
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Remark 1 One may argue that why the non-monotone gradient method works
well for ill-posed inverse problems. It is easy to see that ν1

k ≥ ν2
k. Therefore,

it would be favorable to choose a longer step ν1
k instead of ν2

k. However, the
shorter step ν2

k yields a smaller ‖gk+1‖, which indicates that the shorter step ν2
k

would be efficient for obtaining an accurate solution of a large scale and ill-
conditioned problem. It is clear that the choice of ν

Rayleigh
k possesses both the

suitable length of the step and the reasonable approximation of an accurate
solution. So, it is no doubt that proposed method works efficiently for seismic
inversion and imaging.

Remark 2 In iterative regularization methods, the stopping rule is also an
important issue. Since the noise for practical seismic data is hard to be
identified, it is infeasible to use the commonly adopted discrepancy principle
as the stopping rule [38]. Therefore, for gradient descent methods, the stoping
rule is based on the values of the norm of the gradient gk. We preassign a
tolerance ε > 0. Once ‖gk‖ ≤ ε is reached, the iterative process will be stopped.
Smaller ε yields better approximate solution, however, induces more CPU
time. Empirical values of ε is in the interval (10−3, 10−5).

4 Preconditioning

4.1 Preconditioning non-monotone gradient method

The convergence property of iterative gradient methods depends on the
conditioning of the operators. Preconditioning is a technique to improve
convergence by lowering the condition number or increasing the eigenvalue
clustering. This technique applied to gradient descent methods has been
considered sufficiently in literature, e.g., [8, 9, 16, 21]. The idea is to solve a
modified problem

P−1LT Lm = P−1LTd, (22)

where P is a symmetric positive definite matrix. If the condition number of
P−1LT L is less than that of LT L or the eigenvalues of P−1LT L are more
clustered than that of LT L, a higher rate of convergence will be reached.

Let C be a nonsingular matrix and define the factorization of P as P = CCT ,
then solving (22) is equivalent to solving

C−1LT LC−T z = C−1LTd, (23)

z = CTm. (24)

Note that minimization of the objective function in (5) is equivalent to
minimizing a quadratic programming problem

Qα[m] = 1
2

mT(
LT L + αDT D

)
m − dT Lm, (25)
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therefore the preconditioning problem can be written as minimizing a new
quadratic programming problem

Q̃α[z] = 1
2

zT Az − b T z, (26)

where Ã = C−1(LT L + αDT D)C−T , b̃ = C−1LTd and z = CTm.
The gradient of Q̃α can be evaluated as

g̃(z) = Ãz − b̃ = C−1(LT L + αDT D
)
C−T z − C−1LTd. (27)

The iterations of the steepest descent method are described by

g̃k = Ãzk − b̃ , (28)

zk+1 = zk − νkg̃k, (29)

νk = g̃T
k g̃k

g̃T
k Ãg̃k

, (30)

Straightforward calculation yields the equivalent iterative formula

mk+1 = mk − ν̃khk, (31)

ν̃k = gT
k hk

hT
k (LT L + αDT D)hk

, (32)

hk = P−1gk, (33)

gk+1 = gk − ν̃k
(
LT L + αDT D

)
hk. (34)

Similarly, the iterations of the non-monotone gradient method are de-
scribed by

mk+1 = mk − ν̃khk, (35)

ν̃k =

⎧
⎪⎪⎨

⎪⎪⎩

ν̃1
k, or

ν̃2
k, or

ν̃
Rayleigh
k

, (36)

hk = P−1gk, (37)

gk+1 = gk − ν̃k
(
LT L + αDT D

)
hk, (38)

where

ν̃1
k = gT

k−1hk−1

hT
k−1

(
LT L + αDT D

)
hk−1

,

ν̃2
k = hT

k−1

(
LT L + αDT D

)
hk−1

hT
k−1

(
LT L + αDT D

)
P−1

(
LT L + αDT D

)
hk−1

and ν̃
Rayleigh
k is the linear combinations of ν̃1

k and ν̃2
k.
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For any positive definite bounded scale operator D, Jα is strictly convex.
Since P is nonsingular matrix, therefore similarly to Theorem 1, we can estab-
lish the following convergence results of the preconditioning non-monotone
gradient method.

Theorem 3 Let Jα[m] be given in (5) with �[m] = 1
2‖Dm‖2 and D a positive

def inite bounded scale operator and let {mk} be generated by the precondition-
ing nonmonotone gradient method. Then the sequence {mk} converges to the
minimal solution of Jα[m].

4.2 Preconditioners

Many preconditioners have been developed since the resuscitation of the
conjugate gradient method. Widely referred preconditioners are Jacobian,
Gauss–Seidel’s and incomplete factorization LU proconditioners [32]. The
Jacobian preconditioner uses the diagonal of LT L + αDT D and has been
shown to be useful if the diagonal elements are relatively different. The Gauss–
Seidel’s preconditioner originates from Gauss–Seidel’s iterative method for
solving linear matrix-vector equations. Incomplete factorization precondition-
ing uses an approximation to LT L + αDT D which is easy to invert. These
preconditioners are efficient for well-posed linear problems. However for ill-
posed problems, their advantages are not so obvious.

We apply a symmetric successive over relaxation preconditioner. We as-
sume that the matrix S = LT L + αDT D can be decomposed as

S = M − N,

where

M = 1
ω(2 − ω)

[
(K − ωCl)K−1(K − ωCu)

]
,

N = 1
ω(2 − ω)

[
(1 − ω)K + ωCl

]
K−1 [

(1 − ω)K + ωCu
]
,

and K, Cl and Cu are the diagonal, lower triangular parts and upper triangular
parts of S, respectively. Then we choose P as

P = (K − ωCl)K−1(K − ωCu),

where ω is a real scalar parameter within (0, 2). The optimal choice of the ω

is not easy to do, as it requires very complicated eigenvalue analysis. And in
many cases, such eigenvalue analysis becomes unavailable because the matrix
L is not explicitly given, e.g., seismological problems, and it has to be estimated
iteratively. In the current paper, we only approximate it by the degree of ill-
posedness of the problem.

According to Perron–Frobenius Theorem [40], the spectrum radius of S de-
noted by ρ(S) is greater than 0. It is ready to see that ρ(M−1 N)= ρ(S−1 N)

1+ρ(S−1 N)
< 1.
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Since M−1S = I − M−1 N and 0 < ρ(M−1 N) < 1, hence 0 < ρ(M−1S) < 1.
So, the above choice of the preconditioner P is sufficient to guarantee the
acceleration of convergence of the iterative methods.

5 Numerical results

5.1 Seismic signal deconvolution

We show our method works for seismic deconvolution problem. In simula-
tion, the operator L is formulated by the wavelet matrix with length L + 1
expressed by the wavelet function w as

L(N+L)×N =

⎡

⎢⎢
⎢
⎢⎢
⎢⎢
⎢
⎢⎢
⎢
⎢⎢
⎢
⎢⎢
⎢
⎣

w0 0 0 0 · · · 0
w1 w0 0 0 · · · 0
0 w1 w0 0 · · · 0
...

...
. . .

. . .
. . .

...

wL wL−1 · · · w1 w0 0
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⎥
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.

The reflectivity function is expressed as m = [m0, m1, · · · , mN−1]T and the
recorded seismic data is generated through (1): d = [d0, d1, · · · , dN−1]T .

5.1.1 Multichannel seismic image deblurring

Numerical simulation is a necessary step to prove the efficiency of our pro-
posed method before applying it to practical application problems. It is evident
that one cannot expect that a computational method would be feasible for
practical problems if it fails to work on synthetic seismic data.

The simulation consists of two steps. First, a simulated seismic signal is
generated by computer according to (1) for a given seismic reflectivity function
mtrue(t). Then, the generated seismic signal is processed through our algorithm,
and the retrieved distribution signal is compared with the input one. Note that
d is the observation containing noise, hence an additive noise with level δ is
added. Our example is a multichannel seismic signal deblurring example. The
synthetic seismic deconvolution is very important in seismic interpretation. We
consider a synthetic convolution data generated by Ricker wavelet convolved
with an input signal consists of two layers’ reflection, the data are added
random noise with error level δ = 0.001. The central frequency of the Ricker
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wavelet is 20 Hz, the sampling interval is two milliseconds. The condition
number of the discrete operator L is 3.2241 × 1016. A value of ω equaling to
0.2 is used in constructing the preconditioner. The regularization parameter α

is chosen as an a priori value 0.001. The stabilizer is chosen as 1
2‖Dm‖2 and D

is a tridiagonal matrix in the form

⎡

⎢
⎢⎢
⎢
⎢⎢
⎢
⎢⎢
⎢
⎢⎢
⎢
⎢⎢
⎣

1 + 1
h2

t
− 1

h2
t

0 · · · 0

− 1
h2

t
1 + 2

h2
t

− 1
h2

t
· · · 0

...
. . .

. . .
. . .

...

0 · · · − 1
h2

t
1 + 2

h2
t

− 1
h2

t

0 · · · 0 − 1
h2

t
1 + 1

h2
t

⎤

⎥
⎥⎥
⎥
⎥⎥
⎥
⎥⎥
⎥
⎥⎥
⎥
⎥⎥
⎦

,

where ht is the time sampling interval. We refer to [36] for detailed discussion
of choosing the stabilizer for geophysical inverse problems. Our precondition-
ing non-monotone gradient algorithm converges at five iterations, while the
algorithm without preconditioning requires 18 iterations to yield convergence.
For both algorithms, the root mean square error is 0.0400. The root mean
square error specifies the average deviation of the recovered signal from the

true signal, which is defined as
√∑N

i=1
(dtrue(:)−destimate(:))2

N , where N is the length of

Fig. 1 A simulated
multichannel seismic signal
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Fig. 2 The noisy
multichannel seismic signal
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measurements dtrue, dtrue(:) and destimate(:) mean that the operation is for each
value of dtrue and destimate. We also make test for other noise levels, the results
reveal that preconditioning technique with fast non-monotone iteration yields
good performances. The input reflectivity function is plotted in Fig. 1. The
synthetic data are plotted in Fig. 2. The deblurred seismic signal is plotted in
Fig. 3. It is clear that the noises are greatly reduced.

Fig. 3 The recovered
multichannel seismic signal

0 500 1000 1500

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Traces

T
ra

ve
l t

im
e



Preconditioning non-monotone methods 367

Fig. 4 Layered velocity
model
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5.1.2 Layered velocity model

In the following we consider a 6 layers velocity model, see Fig. 4. To generate
the seismogram, a Ricker wavelet with central frequency equaling 30 Hz and
sampling interval equaling 2 ms is used to perform a convolution. The noisy

Fig. 5 The blurred
seismogram
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Fig. 6 The deblurred
seismogram
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seismogram with noise level δ = 0.001 is shown in Fig. 5. The regularization
parameter α is chosen as 0.001. The same stabilizer and preconditioner are
applied as before. By our algorithm, deblurred seismogram is shown in Fig. 6.
It is clear that the noise parts (which may be multiples in practice) are removed
greatly. With the deblurred data, the reflectivity model can be retrieved.
A comparison of the true reflectivity model and the retrieved reflectivity

Fig. 7 The true reflectivity
signal
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Fig. 8 The recovered
reflectivity signal

0 100 200 300 400 500 600 700 800 900 1000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Traces

Tr
av

el
 ti

m
e

model are illustrated in Figs. 7 and 8, respectively. To show more deals of
the results, we select 11 traces from Figs. 5–8, respectively. The comparison
results are illustrated in Fig. 9. The illustrations indicate that our method
is very stable for numerical inversion and can generate results with high
resolution. Figure 10 plots the least squares errors of the solution by the non-
monotone gradient descent method at each iteration. This figure vividly shows

Fig. 9 Comparison of
selected traces: noisy data
(upper left); denoised data
(upper right); true reflectivity
(lower left); recovered
reflectivity (lower right)
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Fig. 10 Error plot of the least
squares errors of the gradient
descent method
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us the nonmonotonicity and speediness of the non-monotone gradient descent
method. It is well known that the gradient descent method and the conjugate
gradient method possess linear convergence rate [42]. And with proceeding of
iterations, zigzagging phenomenon would occur for these two methods [33, 34].
This phenomenon does not occur for non-monotone gradient descent method.
The R-superlinear convergence property ensures its efficiency in inversion as
Figs. 6–10 illustrated.

5.2 Seismic migration imaging

Deconvolution is an approach to improve the resolution of migration imaging
because it uses knowledge of the resolution kernel of the seismic experiment
to compensate for the effects mentioned in [18, 23, 34, 37]. The model for
migration is in the form of (1) except that the operator L is approximated
by the integral operator

L := ω2
∫

V
G0(g|x)G0(x|s)dV, (39)

where G0(g|x) and G0(x|s) are the wave equation Green’s function satisfying
the acoustic Helmholtz equation for a specified background medium, g is the
location of receiver, x the imaging point and s the source position, dV means
volume integral [39]. The migration imaging refers to solve the (1) to get the
reflector with true amplitude and right location.
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Fig. 11 Seismic data of point
diffraction scatterers with
large gap
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We perform experiments on a six-point scatterers diffraction model. These
scatterer models are buried at a depth of 625–1,625 m. A source wavelet with
central frequency 20 Hz and time sample rate 2 ms is used to generate the data.
We assume that 75 receivers are uniformly distributed on a survey line with
maximum length of 1,875 m. The sampling interval of the survey line and the
depth gridpoint spacing are both 25 m. This yields the grid dimensions of the

Fig. 12 The standard
migration image for the data
in Fig. 11
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Fig. 13 The gradient descent
migration deconvolution
image for the data in Fig. 11
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reflectivity model are 1,875 × 1,875 points. The background velocity is homo-
geneous with c = 2,000 m/s, and the time sampling interval is dt = 2 ms. First,
we assume that the reflectors are well separated, i.e., the reflectors are in a
large distances in offset. The seismogram, the standard migration and gradient
descent migration deconvolution images are illustrated in Figs. 11, 12 and 13,
respectively. Next, we assume that the reflectors are near from each other, i.e.,

Fig. 14 Seismic data of point
diffraction scatterers with
small gap
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Fig. 15 The standard
migration image for the data
in Fig. 14
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the reflectors are in a small distances in offset. The seismogram, the standard
migration and gradient descent migration deconvolution images are illustrated
in Figs. 14, 15 and 16, respectively. It is clear from the illustrations that the non-
monotone gradient descent method yields better resolution imaging results
than the standard migration tool. Comparison of the Figs. 12–16, it reveals that
the non-monotone gradient descent method possesses better resolution ability

Fig. 16 The gradient descent
migration deconvolution
image for the data in Fig. 14
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Fig. 17 Error plot of the least
squares errors of the gradient
descent method
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than the standard migration method. Figure 17 plots the least squares errors of
the solution by the non-monotone gradient descent method at each iteration.
The nonmonotonicity and speediness of the method are clearly illustrated.

6 Discussions

We apply preconditioning techniques to the gradient iteration. A symmetric
successive over relaxation preconditioner is performed in this study. We em-
phasize that this kind of choice of preconditioners is not optimal since we know
that these preconditioners are originally designed for well-posed problems,
and sometimes it is not suitable for ill-posed problems [34]. Moreover, the
choice of the preconditioner is closely related to the structure of the model
of the problems. Therefore, how to choose proper preconditioning matrices
for ill-posed seismic inversion and imaging problem is still to be an interesting
issue.

Applying the above method to real data applications is much more com-
plicated. For example, for retrieval of the reflectivity model of real data,
one needs to estimate the source wavelet, this usually involves well logging
information. For migration deconvolution, since the earth medium is usually
anisotropic, explicit formula of the wave equation Green’s function is hard to
obtain. Therefore one has to resort to other tools, e.g., ray tracing technique,
to compute the travel time and estimate the Green’s function. In that case,
finding preconditioning technique will be a delicate work.
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7 Conclusion

In this paper, we developed a non-monotone gradient method and applied
it to seismic inversion, especially to the seismic deconvolution and least-
square migration. We introduced a regularization technique to reduce the ill-
posedness and designed a preconditioner to speed up the convergence. We
have proved that the method converges with R-superlinear rate. Numerical
examples demonstrate that the new method is efficient and improve the
resolution of the inversion results.
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