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Studies for the cognitive model are relatively new in the literature; however there is a growing interest in
the communication field nowadays. This paper considers the cognitive model in the communication field as
the problem of minimizing a fractional quadratic problem, subject to two or more quadratic constraints in
complex field.Although both denominator and numerator in the fractional problem are convex, this problem
is not so simple since the quotient of convex functions is not convex in most cases. We first change the
fractional problem into a non-fractional one. Second, we consider the semi-definite programming (SDP)
method. For the problem with m (m ≤ 2) constraints, we use the SDP relaxation and obtain the exact
optimal solution. However, for the problem with m (m > 2) constraints, we choose the randomization
method to gain an approximation solution in the complex case. At last, we apply this method to practical
communications over wireless channels with good results.
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1. Introduction

In this paper, we consider the problem of minimizing a fractional quadratic function in the complex
field, and the constraints are two or more quadratic inequalities:

min
x∈Cn

f1(x)

f2(x)
,

s.t. gi(x) ≤ bi, i = 1, . . . , m, (1)
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2 H. Cai et al.

where f1(x) = xHA1x + c1 and f2(x) = xHA2x + c2, A1 and A2 ∈ C
n×n, are complex and Hermi-

tian matrices, and gi(x) = xHGix, Gi ∈ C
n×n, for all i are positive semi-definite matrices, and

c1, c2, bi ∈ R are positive real constants, i = 1, . . . , m. The superscript ‘H’ denotes the conju-
gate transpose. Furthermore, we require that the denominator of the objective function is away
from zero, that is, |f2(x)| > N . The main difficulty of the problem (1) is the non-convexity of
the objective function and the non-convexity of the feasible domain. However, even when both
denominator and numerator in the problem (1) are convex for the fractional quadratic problem,
this problem is not so simple, as the quotient of convex functions is not convex in most cases.

Problem (1) belongs to a special case of ‘sum-of-ratios’ problems and many scholars had
studied and enjoyed in the solving issues [10]. Applications of the ratio problems include
some representing performance-to-cost, profit-to-revenue, return-to-risk, or signal-to-noise for
numerous applications in economics, transportation science, finance, communication, and so on
[5,7,8,16,23]. Problem (1) is still a global optimization problem that may have multiple local
optima. Because of computational complexity, most known algorithms work on the fractional
quadratic problem with linear ratios using the branch-and-bound approach [4,17]. We also refer
to the related works on nonlinear fractional programming [6,7,9,21]. Due to the non-convexity of
the fractional structure, the ordinary Lagrangian dual method only affords a weak duality theorem
that may induce a positive duality gap.

The major motivation for the problem (1) in this paper is from a practical issue in the commu-
nication system. Today, communications over wireless channels continue to be major challenges
in technologies. More and more scholars study the collaborative use of amplify and forward (AF)
or decode and forward (DF) protocols which scale the received noisy signal from the sender,
then forward it to the destination. Previous works focused mostly on the use of fixed-gain AF or
DF relays; recent attempts have turned to the joint optimization of power allocation at the relays
with the aid of some channel state information and maximize the received signal-to-noise ratio
(SNR) at individual and total power constraints [27]. Therefore, the choice of proper optimization
methods is critical.

We consider the model illustrated in Figure 1 and will analyse it in detail in Section 5. In
Figure 1, the primary network (PN) is connected with the primary transmitter (PT) and the primary
destination (PD), the secondary network (SN) is connected with the secondary transmitter (ST)
and the secondary destination (SD), and N relays {SRi}N

i=1 and all nodes in the network have

Figure 1. Multi-relays cooperative cognitive communication model.
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Optimization Methods & Software 3

been configured with one antenna. We assume that there is no direct link between sources and
destinations, and the help of relays (which can be either AF or DF protocols) is necessary to
establish the communication link.

In Section 2, we will describe in detail a schematic algorithm which can change the fractional
problem into non-fractional one. In Section 3, according to the number of constraints (m ≤ 2 and
m > 2), we use different optimization methods. In Section 4, we provide approximate upper and
lower bounds. In Section 5, we successfully resolve an optimization problem based on multi-relay
cooperative communication model and obtain the desired results.

2. A schematic algorithm

For a ‘ratios’ problem, people hope to change the fractional object function into the integral
expression. In [7], the following two statements are equivalent under some proper conditions:

(a)

min
x∈Fn

xHA1x + c1

xHA2x + c2
≤ α,

(b)

min
x∈Fn

{xHA1x − αc1xHA2x + c2} ≤ 0,

where Fn is the feasible set of problem (1). Most methods are based on the above conclusion.

Beck et al. [2] presented a good algorithm and proved that the algorithm ends after
ln((M − m)/ε)/ln(2) iterations with an output x∗ that is a ε-optimal solution. We will solve
problem (1) by the following schematic algorithm in [2]:

Step 1. Set l0 = m, u0 = M (m, M are the lower and upper bound of the object function,
respectively).

Step 2. For every k ≥ 1:
1. Define αk = (lk−1 + uk−1)/2;
2. Calculate βk = minx∈Fn

{
xHA1x + c1 − α(xHA2x + c2)

}
:

(1) if βk ≤ 0, then define lk = lk−1, uk = αk;
(2) if βk ≥ 0, then define lk = αk , uk = uk−1.

Step 3. Stopping rule:
Stop at the first occurrence of the iteration index k∗ that satisfies uk − lk ≤ ε.

Step 4. Output:

x ∈ arg min
x∈Fn

{
xHA1x + c1 − α(xHA2x + c2)

}
.

Remark 1 First, in our method, we will use the above algorithm to change the fractional prob-
lem into a non-fractional one, which plays an important step. According to the above-motioned
algorithm, we must solve another two subproblems:

(1) the subproblem

β = min
x∈Fn

{xHA1x + c1 − α(xHA2x + c2)}; (2)

(2) the choice of lower and upper bounds m and M.
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4 H. Cai et al.

Second, for problem (2), we will use different semi-definite programming (SDP) methods based
on different constraints number m.

We will discuss the solving issue of problem (2) in Section 3, and in Section 4, we show how
to find the lower and upper bounds m and M.

3. Solving the subproblem: problem (2)

For subproblem (2), we will choose different methods according to the number of constraints.
This subproblem is actually a quadratically constrained quadratic problem (QCQP) and is an
NP (non polynomial)-hard problem too. Because of its importance in applications, QCQP has
aroused the interests of many scholars, even though it is NP-hard. Ballare and Rogaway [3] got
some approximate solutions. Hoai [14] gave two methods when the feasible region is strictly
convex: the difference of convex (DC) functions method and the branch-and-bound method.
Nemirovskii [20] confirmed that when the constraint is a convex homogeneous problem, QCQP
would have quality bound. Sturm and Zhang [24] proposed a polynomial-time algorithm, which is
an optimization method for the quadratic optimization problem with a single quadratic constraint
or a convex quadratic inequality constraint and a linear inequality constraint.

First, we transform problem (2) into the below form:

β ′ = β − (c1 − αc2) = min
x∈Fn

xH(A1 − αA2)x. (3)

Problem (3) can be written in the following SDP form:

β̃ ′ = min
x∈Cn

Q · X,

s.t. Gi · X ≤ bi, i = 1, . . . , m,

X � 0,

Rank(X) = 1, (4)

where Q = A1 − αA2, X = xHx and Gi (i = 1 . . . m) are defined in (1).

3.1 In the case m ≤ 2

Since m = 1 is the special case of m = 2, it follows that we only study the case m = 2. Therefore,
problem (4) turns into the SDP relaxation form:

β̃ ′ = min
x∈Cn

Q · X,

s.t. G1 · X ≤ b1,

G2 · X ≤ b2,

X � 0. (5)

Heinkensehlos [13] studied the model that the objective function and constraint functions are
convex. Martinez and Santos [19] studied the model that the objective function is non-convex
and constraint functions are strictly convex. Peng and Yuan [22] addressed this problem when
the objective function and constraint functions are in the indefinite quadratic form and gave the
necessary condition for optimality.
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Optimization Methods & Software 5

Ye [25] gave an exact solution when x ∈ R
n; we will get and prove a similar result

when x ∈ C
n.

Theorem 3.1 If X∗ is an optimal solution of problem (5), then there exists the decomposition of
X∗,

X∗ =
r∑

j=1

xjxH
j ,

where r is the rank of X∗, such that for some α and any j, x∗
j is the solution of problem (3) and

X̃ = x∗
j x∗H

j is a rank-one optimal solution of (4) when m = 2.

Proof The proof is based on the following three cases.
Let y∗

1, y∗
2 be the optimal solution of the dual problem of (5), and y1, y2 are dual variables of the

first and second restrictions, respectively. Clearly, the gap is 0.
Case I: y∗

1 = 0, y∗
2 �= 0.

Decomposition of X∗ such that G2 · X∗ = rG2 · (xjxH
j ), j = 1, 2, . . . , r. Because G1 · X∗ ≤ b1,∑r

j=1 xT
j G1xj ≤ b1, and there exists at least an xj0 satisfying xH

j0G1xj0 ≤ b1/r, let x∗
j = √

rxj0,

hence X̃ = rxj0xH
j0, and

G1 · X̃ = rG1 · (xj0xH
j0) ≤ b1,

G2 · X̃ = rG2 · (xj0xH
j0) ≤ b2,

and

y∗
2(b2 − G2 · X∗) = y∗

2(1 − G2 · X̃) = 0.

Thus, α = √
r and X̃ = x∗

j x∗H
j is the rank-one optimal solution of problem (4) when m = 2.

Case II: y∗
1 �= 0, y∗

2 = 0.
Decomposition of X∗ such that G1 · X∗ = rG1 · (xjxH

j ), j = 1, 2, . . . , r. Because G2 · X∗ ≤ b2,∑r
j=1 xT

j G2xj ≤ b2, and there exists at least an xj0 that satisfies xH
j0G2xj0 ≤ b2/r, let x∗

j = √
rxj0,

hence X̃ = rxj0xH
j0,

G2 · X̃ = rG2 · (xj0xH
j0) ≤ b2,

G1 · X̃ = rG1 · (xj0xH
j0) ≤ b1,

and

y∗
1(b1 − G1 · X∗) = y∗

1(1 − G1 · X̃) = 0.

Thus, α = √
r and X̃ = x∗

j x∗H
j is the rank-one optimal solution of problem (4) when m = 2.

Case III: y∗
1 �= 0, y∗

2 �= 0.
Decomposition of X∗ such that (G2/b2 − G1/b1) · X∗ = r(G2/b2 − G1/b1) · (xjxH

j ), j =
1, 2, . . . , r. Because (G1/b1) · X∗ = (G2/b2) · X∗ = 1, hence r(G2/b2 − G1/b1) · xjxH

j = 0 for
j = 1, 2, . . . , r. Since G1 · X∗ = ∑r

j=1 xH
j G1xj = b1, there must exist an xj0 that satisfies

xH
j0G1xj0 > 0. Clearly, (G1/b1) · xj0xH

j0 = (G2/b2) · xj0xH
j0. Let x∗

j = (
√

b1/
√

xH
j0G1xj0)xj0, X̃ =

x∗
j x∗H

j . Therefore, we obtain

G1 · X̃ = G1 · b1

xH
j0G1xj0

xj0xH
j0 = b1

xH
j0G1xj0

xH
j0G1xj0 = b1,
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6 H. Cai et al.

G2 · X̃ = G2 · b1

xH
j0G1xj0

xj0xH
j0 = b1

xH
j0G1xj0

b2G1

b1
· xj0xH

j0 = b2

xH
j0G1xj0

xH
j0G1xj0 = b2.

Here,α = √
b1/

√
xH

j0G1xj0 and X̃ is the rank-one optimal solution of problem (4) when m = 2. �

In this theorem, the rank-one decomposition on Hermitian matrix is also important in the
complex field, and we refer to [1] for details.

3.2 In the case m > 2

For problem (4), we divide both sides of the constraints by bi (bi > 0), hence we have the following
SDP relaxation form:

β̃ ′ = min
x∈Cn

Q · X,

s.t. Gi/bi · X ≤ 1, i = 1, . . . , m,

X � 0. (4′)

Since problem (4′) is an NP-hard problem when m > 2, it follows that we can hardly obtain
the optimum in polynomial time [18]. For the above reason, we consider a randomized algorithm.
A randomized algorithm for a minimization problem is called randomized ε-approximation
algorithm, where r ≥ 1, if it outputs a feasible solution with its (expected) value at most r times
the optimum value for all instances of the problem. The main merits of a randomized algorithm
are that the design of the algorithm is relatively simple, the approximate ratio is relatively high
because of the amount of computation done by the computer is huge, and the running time shows
better improvement than that of the deterministic algorithm in some cases, and so on. Ye [25]
gave a max(m2, n2) approximate ratio, when all Gi � 0 are in real field. And a rounding algorithm
provided 2 ln(4m2) approximate ratio when all Gi � 0 in the real field [25]. He et al. [11,12]
discussed the approximate ratio when one of the Gi’s is indefinite, while others and Q are positive
semi-definite, where the symbol of the inequality constraint of problem (4′) is ‘≥’. That is, the
approximate ratio is O(m2) when x ∈ R

n, and the approximate ratio is O(m) when x ∈ C
n. Luo

et al. [18] obtained the same result.
Upon obtaining an optimal solution X∗ of (4′), we could construct a feasible solution of problem

(3) as below:

(1) Generate a random vector ξ ∈ C
n from the complex-valued normal distribution Nc(0, X∗)

[15].
(2) Let x∗(ξ) = ξ/max1≤i≤m

√
ξHGiξ .

4. Finding the bounds m and M

In this optimal model, the constraints are xHGix ≤ bi, i = 1, . . . , m. It is difficult to find the
upper bound of the objective function. The main reason is that the feasible region is surrounded
by a number of balls. Therefore, this is a non-convex problem. Due to

∑m
i=1 xHGix ≤ ∑m

i=1 bi,
hence xH(

∑m
i=1 Gi)x ≤ ∑m

i=1 bi. Because Gi is positive semi-definite, hence
∑m

i=1 Gi is positive
semi-definite too. Moreover, the feasible region is non-convex. However, we are just looking for
an approximate upper bound instead of an exact one. Under this premise, we may assume that
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Optimization Methods & Software 7

∑m
i=1 Gi is positive definite. Then, we can get

xH

(
m∑

i=1

Gi

)
x = xH(UHBU)x ≥ λmin

(
m∑

i=1

Gi

)
(Ux)H(Ux),

where U is a unit orthogonal matrix and B is a diagonal matrix with diagonal elements being
eigenvalues of

∑m
i=1 Gi. Therefore, we have ||x||2 ≤ ∑m

i=1 bi/λmin(
∑m

i=1 Gi).
Because that |f2(x)| > N , thus∣∣∣∣xHA1x + c1

xHA2x + c2

∣∣∣∣ ≤ 1

N

∣∣xHA1x + c1

∣∣ ≤ 1

N

(∣∣xHA1x
∣∣ + c1

) ≤ 1

N

(
m∑

i=1

bi
λmax(A1)

λmin
(∑m

i=1 Gi
) + c1

)
.

Therefore, M = (1/N)(
∑m

i=1 bi(λmax(A1)/λmin(
∑m

i=1 Gi)) + c1) and m = −M.
It should be noted that this upper bound is not an exact bound, because we enlarge the feasible

region. We hope to find a better upper bound in our further work.

5. The result of a communication model

Consider a cooperative beamforming in cognitive radio network with hybrid relay, which consists
of two parts as shown in Figure 1: the PN with the PT and the PD, and the SN with the ST and the
SD. N relays {SRi}N

i=1 depicted in Figure 1 and all nodes in the network have been configured with
one antenna. We assume that there is no direct link between sources and destinations, the help of
relays (which can use either AF or DF protocols) is necessary to establish the communication link.
The dotted lines in Figure 1 represent the interference channels between different transmitters
and receivers. We assume that ST is far from PD and PT is far from SR, hence the interference
between them is ignored. We denote the channel between ST and SRi (the ith relay) as hSRi ∈ C,
the channel between PT and SRi as gPRi ∈ C, the channel between SRi and SD as hRid ∈ C, and
the channel between SRi and PD as gRiD ∈ C, i = 1, . . . , N . The channel between PT and PD is
denoted by hPD ∈ C. For other parameters and more detailed description of the model, refer to
[26].

The received SNR of SD is

SNR(SD) = | ∑L
i=1

√
PSβiwihSRi hRid + ∑N

i=L+1 wihRid |2
| ∑L

i=1

√
PPβiwigPRi hRid |2 + ∑L

i=1 β2
i |wi|2|hRid |2NR + Nd

, (6)

where the numerator of (6) is the received signal of SD, and the first and second item of the denom-
inator are the received interference and noise, respectively. The third item of the denominator is
the white noise of SD. The constraints contain two cases:

(1) a total power constraint: ‖ w ‖2≤ PT;
(2) an individual and a total power constraints: |wi|2 ≤ p and ‖ w ‖2≤ PT.

The power of the interference and the noise in PD can be written as

I =
∣∣∣∣∣

L∑
i=1

√
PPβiwigPRi gRiD

∣∣∣∣∣
2

+
∣∣∣∣∣

L∑
i=1

√
PSβiwihSRi gRiD +

N∑
i=L+1

wigRiD

∣∣∣∣∣
2

+
L∑

i=1

β2
i |wi|2|gRiD|2NR + ND (7)

and the power satisfies I ≤ Ith, where Ith is a real threshold.
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8 H. Cai et al.

Equations (6) and (7) can be rewritten equivalently as

SNR(SD) = wHhhHw

wHg̃g̃Hw + wHHHHw + Nd
(8)

and

I = wHggHw + wHh̃h̃Hw + wHGGHw + ND, (9)

respectively, where

w = [w1, w2, . . . , wN ]T,

h = [h1, h2, . . . , hN ]T, hi =
{√

PSβihSRi hRid , if 1 ≤ i ≤ L,

hRid , if L + 1 ≤ i ≤ N ;

h̃ = [h̃1, h̃2, . . . , h̃N ]T, h̃i =
{√

PSβihSRi gRiD, if 1 ≤ i ≤ L,

gRiD, if L + 1 ≤ i ≤ N ;

g = [g1, g2, . . . , gN ]T, gi =
{√

PPβigPRi gRiD, if 1 ≤ i ≤ L,

0, if L + 1 ≤ i ≤ N ;

g̃ = [g̃1, g̃2, . . . , g̃N ]T, g̃i =
{√

PPβigPRi hRid , if 1 ≤ i ≤ L,

0, if L + 1 ≤ i ≤ N ;

H = diag[h11, h22, . . . , hNN ]T, hii =
{√

NRβihRid , if 1 ≤ i ≤ L,

0, if L + 1 ≤ i ≤ N ,

and

G = diag[g11, g22, . . . , gNN ]T, gii =
{√

NRβigRiD, if 1 ≤ i ≤ L,

0, if L + 1 ≤ i ≤ N .

Therefore, we could establish the following two optimization problems, respectively, as

(I) a total power constraint

max
wHhhHw

wHg̃g̃Hw + wHHHHw + Nd

s.t. ‖ w ‖2≤ PT,

I = wHggHw + wHh̃h̃Hw + wHGGHw + ND ≤ Ith. (10)

(II) an individual and a total power constraints

max
wHhhHw

wHg̃g̃Hw + wHHHHw + Nd

s.t. |wi|2 ≤ p, i = 1, 2, . . . , N ,

‖ w ‖2≤ PT,

I = wHggHw + wHh̃h̃Hw + wHGGHw + ND ≤ Ith. (11)

We solve above two optimization problems (I) and (II), respectively, by our methods described
in former sections.
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Optimization Methods & Software 9

Figure 2 depicts the maximum SNR at SD versus the total power of relays with PP = 15 dB,
PS = 15 dB and Ith = 1 dB. In Figure 2, the gap between the total power constraint (I) and other
two constraints (II) become larger as the total power of the relays increases. When the total power
is low, the gap is about 0.4 dB for AF relay and 0.8 dB for hybrid relay, while the gap is about
0.8 dB for AF relay and 1.4 dB for hybrid relay when the total power is high. In addition, the
performance of hybrid relay is better than that of AF relays. Especially, when the total power is
high, the gap is obvious. For example, when the total power is 12 dB, the gap is 0.3 dB for the
total power constraint and 0.1 dB for other two power constraints; with the total power changed
to 19 dB, the gap will be 1.2 dB for the total power constraint (I) and 0.5 dB for the total and
individual power constraints (II).

Figure 3 depicts the maximum SNR at SD versus the total power of relays with PP = 15 dB,
PS = 15 dB and Ith = 1 dB. The gaps between relays with beamforming and relays without beam-
forming for the two power constraint cases are constant as the maximum total transmitted power
of relays varies. They are about 2 and 2.7 dB for the total power constraint (I) and other two
power constraints (II), respectively, hence the advantage of the beamforming is more significant

Figure 2. The maximum SNR at SD versus the total power of relays for different relay protocols.

Figure 3. The maximum SNR at SD versus the total power of relays for beamforming and non beamforming cases.

D
ow

nl
oa

de
d 

by
 [

In
st

itu
te

 o
f 

G
eo

lo
gy

 a
nd

 G
eo

ph
ys

ic
s 

] 
at

 0
0:

46
 2

8 
A

ug
us

t 2
01

2 



10 H. Cai et al.

Figure 4. The maximum SNR at SD versus the number of relays.

for the both power constraints which are practical for the relays. In addition, the performance gap
between the two power constraints becomes larger as the total power of relays improved.

Figure 4 shows the maximum SNR at SD versus the number of relays. We fix PT at 15 dB and
Ith at −5 dB. We observe that the performance of SNR will improve as the number of the relays
becomes large. However, when the relays are more than 20, the performance improves slowly,
about 1 dB per five relays more. It is unworthy to get such little gain to use so many relays in
practice. We suggest deploying at most 20 relays.

6. Discussion and the further work

The ratios problems are considered to be difficult because of the non-convexity of the objective
function and the feasible region. In this paper, we have analysed the optimal problem of a quadrat-
ically constrained fractional quadratic problem, and we choose a different approach according to
the number of constraints (m). Our analysis is motivated by an important application problem in
communication system. First, we adopt the schematic algorithm which has been introduced in
Section 2. Then, we tackle the subproblem (QCQP) in the schematic algorithm and search for
lower and upper bounds. For the subproblem (QCQP), we use the SDP method which can obtain
the exact optimal solution when m ≤ 2. However, we turn to adopt a randomized algorithm which
can obtain an approximate solution when m > 2 and reach O(m) approximation in the complex
case. In Section 5, we introduce a new cognitive model which is more realistic than the tradi-
tional communication model. Using the method described in former sections, we could find the
optimum under the total power constraint successfully and obtain the approximation optimum
under both power constraints. We analyse the obtained results in detail and suggest the suitable
relay number (e.g. at most 20). We emphasize that studies for the cognitive model are relatively
new in the literature; however, there is a growing interest in the communication field nowadays.
Studying related algorithms with higher approximation ratio when m > 2 and obtaining more
accurate bounds in Section 4 will be our future work.

Acknowledgements

We are grateful to reviewers’ helpful comments and suggestions on revision of the paper. This research is supported by
National Natural Science Foundation of China under grant numbers 10971017, 40974075 and the Knowledge Innovation
Programs of Chinese Academy of Sciences KZCX2-YW-QN107.

D
ow

nl
oa

de
d 

by
 [

In
st

itu
te

 o
f 

G
eo

lo
gy

 a
nd

 G
eo

ph
ys

ic
s 

] 
at

 0
0:

46
 2

8 
A

ug
us

t 2
01

2 



Optimization Methods & Software 11

References

[1] W.B. Ai, Y.W. Huang, and S.Z. Zhang, New results on Hermitian matrix rank-one decomposition, Math. Program.
Ser. A. 128 (2011), pp. 253–283.

[2] A. Beck, A. Ben-Tal, and M. Teboulle, Finding a global optimal solution for a quadratically constrained fractional
quadratic problem with applications to the regularized total least squares, SIAM J. Matrix Anal. Appl. 28 (2006),
pp. 425–445.

[3] M. Bellare and P. Rogaway, The complexity of approximating a nonlinear program, Math. Program. 69 (1995),
pp. 429–442.

[4] H.P. Benson, On the global optimization of sum of linear fractional functions over a convex set, J. Optim. Theory
Appl. 121 (2004), pp. 19–39.

[5] C.S. Colantoni, R.P. Manes, and A. Whinston, Programming, Parda-los rates, and pricing decisions, Account. Rev.
44 (1969), pp. 467–481.

[6] B.D. Craven, Fractional Programming, Sigma Series in Applied Mathematics, Vol. 4, Heldermann Verlag, Berlin,
1988.

[7] W. Dinkelbach, On nonlinear fractional programming, Manage. Sci. 13 (1967), pp. 492–498.
[8] J.E. Falk and S.W. Palocsay, Optimizing the sum of linear fractional functions, in Recent Advances in Global

Optimization, C.A. Floudas and P.M. Parda-los, eds., Princeton University Press, Princeton, NJ, 1992, pp. 221–258.
[9] S.C. Feng, D.Y. Gao, R.L. Sheu, and W.X. Xing, Global optimization for a class of fractional programming problems,

J. Global Optim. 45 (2009), pp. 337–353.
[10] R.W. Freund and F. Jarre, Solving the sum-of-ratios problem by an interior-point method, J. Global Optim. 19 (2001),

pp. 83–102.
[11] S.M. He, Z.N. Li, and S.Z. Zhang, Approximation algorithms for homogeneous polynomial optimization with

quadratic constraints, Math. Program. Ser. A 125(2) (2010), pp. 353–383.
[12] S.M. He, Z.Q. Luo, J.W. Nie, and S.Z. Zhang, Semidefinite relaxation bounds for indefinite homogeneous quadratic

optimization, SIAM J. Optim. 19 (2008), pp. 503–523.
[13] M. Heinkensehlos, On the solution of a two balls trust region subproblem, Math. Program. 64 (1994), pp. 249–276.
[14] L.T. Hoai, An efficient algorithm for globally minimizing a quadratic function under convex quadratic constraints,

Math. Program. Ser. A 87 (2000), pp. 401–426.
[15] Y.W. Huang and S.Z. Zhang, Approximation algorithms for indefinite complex quadratic maximization problems,

Sci. China Ser. A 53(10) (2010), pp. 2697–2708.
[16] P.K. Kanchan, A.S.B. Holland, and B.N. Sahney, Transportation techniques in linear-plus-fractional programming,

Cahiers du CERO 23 (1981), pp. 153–157.
[17] T. Kuno, A branch-and-bound algorithm for maximizing the sum of several linear ratios, J. Global Optim. 22 (2002),

pp. 155–174.
[18] Z. Luo, N. Sidiropoulos, P. Tseng, and S. Zhang, Approximation bounds for quadratic optimization with homogeneous

quadratic constraints, SIAM J. Optim., 18(1) (2007), pp. 1–28.
[19] J.M. Martinez and S.A. Santos, A trust region strategy for minimization on arbitrary domains, Math. Program. 68

(1995), pp. 267–301.
[20] A. Nemirovskii, C. Roos, and T. Terlaky, On maximization of quadratic form over intersection of ellipsoids with

common centers, Math. Program. 86 (1999), pp. 463–473.
[21] P.M. Pardalos and A. Phillips, Global optimization of fractional programs, J. Global Optim. 1 (1991), pp. 173–182.
[22] J.M. Peng and Y. Yuan, Optimality conditions for the minimization of a quadratic with two quadratic constraints,

SIAM J. Optim. 7 (1997), pp. 579–594.
[23] I.M. Stancu-Minasian, Applications of the fractional programming, Econ. Comput. Econ. Cybern. Stud. Res. 1

(1980), pp. 69–86.
[24] J.F. Sturm and S. Zhang, On cones of nonnegative quadratic functions, Math. Oper. Res. 28 (2003), pp. 246–267.
[25] Y.Y. Ye, Linear conic programming, Work Paper, 2004; available at http://www.stanford.edu/class/msande314.
[26] T. Yi, L. Guo, K. Niu, H.Y. Cai, J.R. Lin, and W.B. Ai, Cooperative beamforming in cognitive radio network

with hybrid relay, 19th International Conference on Telecommunications (ICT), 2012, doi: 10.1109/ICTEL.2012.
6221214.

[27] G. Zheng, K.K. Wong, A. Paulraj, and B. Ottersten, Collaborative-relay beamforming with perfect CSI: Optimum
and distributed implementation, IEEE Signal Process. Lett. 16(4) (2009), pp. 257–260.

D
ow

nl
oa

de
d 

by
 [

In
st

itu
te

 o
f 

G
eo

lo
gy

 a
nd

 G
eo

ph
ys

ic
s 

] 
at

 0
0:

46
 2

8 
A

ug
us

t 2
01

2 

http://www.stanford.edu/class/msande314

	Introduction
	A schematic algorithm
	Solving the subproblem: problem (2)
	In the case m2
	In the case m>2

	Finding the bounds m and M
	The result of a communication model
	Discussion and the further work



