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S U M M A R Y
Real Earth media are not perfectly elastic. Instead, they attenuate propagating mechanical
waves. This anelastic phenomenon in wave propagation can be modeled by a viscoelastic
mechanical model consisting of several standard linear solids. Using this viscoelastic model,
we approximate a constant Q over a frequency band of interest. We use a four-element
viscoelastic model with a trade-off between accuracy and computational costs to incorporate Q
into 2-D time-domain first-order velocity–stress wave equations. To improve the computational
efficiency, we limit the Q in the model to a list of discrete values between 2 and 1000. The
related stress and strain relaxation times that characterize the viscoelastic model are pre-
calculated and stored in a database for use by the finite-difference calculation. A viscoelastic
finite-difference scheme that is second order in time and fourth order in space is developed
based on the MacCormack algorithm. The new method is validated by comparing the numerical
result with analytical solutions that are calculated using the generalized reflection/transmission
coefficient method. The synthetic seismograms exhibit greater than 95 per cent consistency
in a two-layer viscoelastic model. The dispersion generated from the simulation is consistent
with the Kolsky–Futterman dispersion relationship.

Key words: Numerical solutions; Elasticity and anelasticity; Seismic attenuation; Wave
propagation.

1 I N T RO D U C T I O N

The materials that compose the Earth are not perfectly elastic. When
seismic waves propagate within the Earth, both attenuation and
waveform distortion can be observed. Under these circumstances,
the anelasticity of the Earth often cannot be neglected in seismic
modeling and data processing (Samec & Blangy 1992; Wang 2009).

The attenuation property is commonly characterized by a di-
mensionless quality factor Q, which is defined in terms of the mean
energy stored in the medium divided by the energy lost during a sin-
gle cycle. Over the past three decades, extensive efforts have sought
to develop modeling methods for wave propagation in viscoelas-
tic media. These approaches can be grouped into two categories.
Methods in the first category use the fractional time derivative to
obtain the convolution stress–strain relationship which forms the
constant-Q model given by Kjartansson (1979), (Carcione et al.
2002; Carcione 2008). The fractional time derivative is transformed
into a fractional Laplacian operator (Chen & Holm 2004) and cal-
culated using the fractional Fourier pseudospectral method. This
technique avoids storing wavefield, and thus, the modeling is as
efficient as in lossless media (Carcione 2010; Treeby & Cox 2010;

Zhu & Carcione 2014; Zhu & Harris 2014). Methods in the sec-
ond category use a spectrum of relaxation mechanisms to describe
the viscoelastic constitutive relationship (Emmerich & Korn 1987;
Robertsson et al. 1994; Day & Bradley 2001). The generalized stan-
dard linear solid (GSLS, also called the generalized Zener body or
GZB by some authors) and generalized Maxwell body (GMB) are
widely used as viscoelastic models to introduce the memory vari-
ables into propagation modeling (Robertsson et al. 1994; Kristek &
Moczo 2003). With this technique, the viscoelastic wave equation
can easily be solved using a time-marching scheme, such as the
finite-difference, finite-element or pseudospectral methods. Day &
Minster (1984) were the first to propose a framework for incorpo-
rating the convolution operator into the time-marching algorithm
to compute theoretical seismograms. Their approach uses the Padé
approximant to transform the convolution integral, which relates
stress to strain history, into a convergent sequence of constant-
coefficient differential operators of increasing order. Emmerich &
Korn (1987) improved the accuracy and efficiency of this approach
by considering the rheology model of GMB, in which the viscoelas-
tic moduli have the desired rational form. Carcione et al. (1988a,b,c)
developed an alternative approach based on the rheology of GSLS.

C© The Authors 2016. Published by Oxford University Press on behalf of The Royal Astronomical Society. 1539

 by guest on July 12, 2016
http://gji.oxfordjournals.org/

D
ow

nloaded from
 

mailto:zhaolf@mail.igcas.ac.cn
http://gji.oxfordjournals.org/


1540 N. Fan et al.

Two parallel sets of formulations were developed. The GMB ap-
proach introduced anelastic functions into the wave equation. This
technique was subsequently refined by others (Krebes & Quiroga-
Goode 1994; Kristek & Moczo 2003). The GSLS approach incor-
porated memory variables into the wave equation and this method
was further developed for the 2-D and 3-D displacement–stress or
velocity–stress formulations of both viscoacoustic and viscoelastic
wave equations (Tal-Ezer et al. 1990; Carcione 1993; Robertsson
et al. 1994; Blanch et al. 1995; Xu & McMechan 1995). Although
the constitutive relationships of GZB and GMB differ, the two result-
ing viscoelastic models are essentially the same (Moczo & Kristek
2005; Cao & Yin 2014).

Robertsson et al. (1994) used a fourth-order spatial and second-
order temporal staggered finite-difference scheme to solve the first-
order velocity–stress viscoelastic wave equation using the GSLS
model in 2-D and 3-D media. Because of its simplicity and high
efficiency, this method has been widely extended to other applica-
tions, such as viscoelastic modeling that includes surface topogra-
phy (Robertsson 1996; Hestholm 1999; Hestholm & Ruud 2000),
parallel 3-D viscoelastic modeling (Bohlen 2002), rotated
staggered-grid modeling (Saenger & Bohlen 2004) and spectral-
element modeling (Komatitsch & Tromp 1999). In this study, we
improved the expressions of memory variables by separating the
memory variables of P and S waves based on the method of Roberts-
son et al. (1994) and implemented 2-D viscoelastic finite-difference
modeling. Based on a constant Q model over a specified frequency
band, we construct a database composed of several stress and strain
relaxation times corresponding to different Q values. The viscoelas-
tic database can be directly called by the finite-difference program,
which greatly reduces the modeling calculation. To validate our
approach, we calculate the 2-D viscoelastic finite-difference mod-
eling in benchmark models and compare numerical results with
analytical seismograms calculated using the generalized reflec-
tion/transmission coefficient method (GRTM). These numerical re-
sults reveal that our method can accurately reproduce the amplitude
decay and waveform dispersion caused by anelastic attenuation.

2 V I S C O E L A S T I C M O D E L

Linear viscoelastic theory is based on the Boltzmann superposition
principle and is applicable for small deformations. The current sta-
tus of the stress in the model is determined by the superposition of
responses at previous times, and the material is considered to have
a memory because the current stress depends on the full strain his-
tory (Christensen 1982). The viscoelastic constitutive relationship
between stress and strain is described as

σ (t) = G (t) ∗ ε̇ (t) = Ġ (t) ∗ ε (t) , (1)

where ∗ denotes the time convolution, ε(t) is the strain, σ (t) is the
stress and G(t) is the relaxation function. A dot above a variable
indicates a time derivative.

Liu et al. (1976) demonstrated that a GSLS model composed of
multiple relaxation mechanisms can explain attenuation observed
both in the Earth and in laboratory experiments. The relaxation
function G(t) of a GSLS composed of multiple parallel SLSs can
be expressed by summing the parameters of the individual SLSs:

G (t) = MR

(
1 −

L∑
l=1

(
1 − τεl

τσ l

)
e−t/τσ l

)
θ (t) , (2)

where MR is the relaxed modulus, L is the number of SLSs in the
viscoelastic model, τσ l and τεl are the stress and strain relaxation
times of the lth SLS and θ (t) is the Heaviside function.

2.1 Incorporating the Q model into the viscoelastic wave
equation

The quality factor Q, which quantifies the attenuation property of a
medium, should be incorporated into the wave equation and solved
by time-domain numerical methods. By applying Fourier transform
to the time derivative of the relaxation function (2), we obtain the
complex modulus of the viscoelastic model

M (ω) = F
[
Ġ (t)

]
, (3)

where ω is the angular frequency and F denotes the Fourier trans-
form.

The complex modulus M(ω) represents the linear relationship
between the stress and strain in the frequency domain. The relation-
ship between Q and the complex modulus of the viscoelastic model
can be described as follows (O’connell & Budiansky 1978):

Q (ω) = Re [M (ω)]

Im [M (ω)]
, (4)

where Re and Im are the real and imaginary parts of M(ω), respec-
tively.

From eq. (2) to (4), the frequency-domain relationship between
Q and the viscoelastic parameters in a GSLS model can be obtained
as follows (Blanch et al. 1995):

Q (ω) =
1 − L +

L∑
l=1

1+ω2τεl τσ l
1+ω2τσ l

2

L∑
l=1

ω(τεl −τσ l )
1+ω2τσ l

2

. (5)

Several techniques have been proposed to obtained relaxation
times in eq. (5) for a given Q(ω). For example, Blanch et al. (1995)
suggested the τ -method, and Liu & Archuleta (2006) proposed
the empirical interpolation method. These techniques were simple
but often sacrificed certain accuracies. In this study, we develop
an alternative method by adopting a formal inversion to determine
relaxation times from Q. An inversion method is usually very time
consuming, particularly if needs to calculate for every gridpoint.
To mitigate this difficulty, we convert continues Q value into a
discretized Q within the commonly used range of Q = 2–1000. In
this way, we only need to inverse approximately 1000 Q values.
This procedure is moved out from the finite-difference code. After
determine the optimal number of SLSs and obtain relaxation times
for a frequency-dependent Q model, we create a database, in which
tabulated Q values are linked to multiple relaxation times. Before
calculation, the finite-difference code will visit the database and
read the relaxation times. If large number of finite differences need
be calculated, such as in an iterative process in the full-waveform
inversion, the database can be used repeatedly.

Frequency band-limited constant P- and S-wave Q models are
widely accepted in earthquake seismology (Kjartansson 1979;
Spencer 1981; Murphy 1982), and their attenuation–dispersion re-
lationships have been extensively investigated (Futterman 1962).
Thus, we use a spectrum of viscoelastic parameters to simulate the
constant Q model. The frequency range we consider is between 0.05
and 25.0 Hz, within which seismic waves from natural earthquakes
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are observable. To optimize the model parameters, we adopt an
objective function

E =
√√√√ 1

N − 1

N∑
n=1

[Q (ωn) − Qcst]
2, (6)

where ωn are the discrete frequencies used to check the Q model, N
is the number of frequencies log-evenly distributed in the frequency
band of interest, Q(ωn) is from eq. (4) and is calculated using eq. (5)
and Qcst is a constant Q within the frequency band. Minimizing
this objective function can determine the viscoelastic parameters in
eq. (5).

We attempt to obtain the desired constant-Q behaviour while
reducing computational costs to solve viscoelastic equations, par-
ticularly if the problem is 3-D, because the number of memory
variable equations (see the viscoelastic wave equation in Section 3)
is proportional to L and involves extra computational costs to solve
the wave equations. We first determine the optimal number of SLSs
in eq. (5) and then use an inversion method to determine the stress
and strain relaxation times for each SLS. We test the viscoelastic
models with different numbers of SLSs to construct the parameter
database. The viscoelastic parameters are obtained using the simu-
lated annealing method (Szu & Hartley 1987; Ingber 1989). Given
that Q = 100, the viscoelastic parameters in the L = 2–10 SLSs
models can be inverted. Fig. 1 presents the (a) standard deviations,
(b) relative errors and (c) approximation curves for a constant Q
model. The approximation error becomes smaller as L increases,
but the simulation calculation cost may also increase due to the
increasing number of memory variable equations. Considering the
trade-off between the approximation error and computational costs,
we choose L = 4 to construct a reasonable viscoelastic model. Note
that, the number of elements is related to the bandwidth of the Q
model. Given an accuracy, a wideband Q model usually requires
more SLSs, and a narrowband Q needs less SLSs. After L is de-
termined, the stress and strain relaxation times that correspond to
integer Q values over the commonly used range of 2–1000 are in-
verted and stored as the viscoelastic-parameter database, which can
be called later by the finite-difference program.

In Liu & Archuleta (2006) approach, they set the minimum and
maximum Q as 5 and 5000, the number of relaxation mechanisms
L = 8, and the frequency band 0.01–50 Hz. They first determine the
viscoelastic parameters for minimum and maximum Q, followed
by using interpolation to obtain parameters for intermediate Q val-
ues. The empirical interpolation formula obtained from numerical
calculation cannot be easily extended to cases with different fre-
quency dependency or different number of relaxation mechanisms.
In order to compare the accuracy between two approaches, we apply
our method to their case and the results are shown in Fig. 2, where
(a)–(d) are for Q = 10, 100, 1000 and 5000. The red and blue lines
are for ours and Liu’s results. In general, our approach generates
smaller errors in the entire frequency band, especially for lower Q
cases.

2.2 Dispersion relationship

According to eq. (2), the relaxation function is related to the relaxed
modulus and relaxation times. We have obtained L pairs of stress
and strain relaxation times. In this section, we determine the relaxed
modulus MR for a reference frequency fr, a reference velocity vr at
this reference frequency and density ρ of the medium. By substitut-
ing ωr = 2π fr and vr = cp(ωr ) into the definition of phase velocity

Figure 1. Parameter comparisons for inverted viscoelastic models with L =
2–10 SLSs, including (a) standard deviation curves, (b) relative error curves
and (c) Q-approximation curves for different L values. The frequency band
of 0.05–25 Hz is labeled.
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Figure 2. Comparison between Q models obtained using different approx-
imations. The frequency band is 0.01–50 Hz. From (a) to (d), the Q values
calculated for an eight-element viscoelastic model are 10, 100, 1000 and
5000, respectively. The red lines are for method proposed in this study and
the blue lines are from Liu & Archuleta (2006).

cp, that is, eq. (B2) (refer to Appendix B), we obtain the relaxed
modulus

MR = ρ · v2
r ·
√

	1
2 + 	2

2 + 	1

2
(
	1

2 + 	2
2
) , (7-1)

where

	1 = 1 − L +
L∑

l=1

1 + ωr
2τεlτσ l

1 + ωr
2τσ l

2
, (7-2)

	2 =
L∑

l=1

ωr (τεl − τσ l )

1 + ωr
2τσ l

2
. (7-3)

The relaxation function G(t) describes the dynamic response of
the medium. Using the equations in Appendix B, the relaxation
function gives the phase and group velocities, which provide mea-
surements of the attenuation–dispersion relationship in a viscoelas-
tic model. To validate the viscoelastic model proposed in this study,
the dispersion relationship generated by the GSLS is compared to
the Kolsky–Futterman (K-F) dispersion relationship (Kolsky 1956;
Futterman 1962; Ursin & Toverud 2002). For a set of parameters

Q = 100, fr = 10 Hz and vr = 3.0 km s−1, both the phase velocities
and attenuation coefficients from these two models are compared
in Fig. 3 as functions of frequency. The two sets of curves are
highly consistent over the frequency band of interest, suggesting
that our viscoelastic model meets the requirement for modeling
seismic waves that propagates in viscoelastic models.

We also investigate how Q, fr and vr affect the phase and group
velocities. For a reference velocity vr = 3.0 km s−1 at different refer-
ence frequencies fr, the phase and group velocities versus frequency
for Q = 60, 80, 100, 120 and 140 and for fr = 0.1, 1.0 and 10 Hz are
illustrated in Fig. 4. The results demonstrate that low Q values tend
to generate large velocity dispersions, which is consistent with a
linear viscoelastic model. For the same Q value, different reference
frequencies cause the dispersion curves to shift up and down.

3 V I S C O E L A S T I C WAV E E Q UAT I O N S

The 2-D first-order P–SV viscoelastic wave equations can be de-
rived from the momentum conservation equation and viscoelastic
constitutive relationship (for details, refer to Appendix A).

ρv̇x = ∂σxx

∂x
+ ∂σxz

∂x
+ fx , (8-1)

ρv̇z = ∂σxz

∂z
+ ∂σzz

∂z
+ fz, (8-2)

σ̇xx = π SP
L

(
∂vx

∂x
+ ∂vz

∂z

)
− 2μSS

L

∂vz

∂z
+ T P + T S

xx , (8-3)

σ̇zz = π SP
L

(
∂vx

∂x
+ ∂vz

∂z

)
− 2μSS

L

∂vx

∂x
+ T P + T S

zz, (8-4)

σ̇xz = μSS
L

(
∂vz

∂x
+ ∂vx

∂z

)
+ T S

xz, (8-5)

ṙ P
l = − 1

τ P
σ l

[
r P

l + π

(
τ P
εl

τ P
σ l

− 1

)(
∂vx

∂x
+ ∂vz

∂z

)]
, (8-6)

ṙ S
xxl = − 1

τ S
σ l

[
r S

xxl − 2μ

(
τ S
εl

τ S
σ l

− 1

)
∂vz

∂z

]
, (8-7)

ṙ S
zzl = − 1

τ S
σ l

[
r S

zzl − 2μ

(
τ S
εl

τ S
σ l

− 1

)
∂vx

∂x

]
, (8-8)

ṙ S
xzl = − 1

τ S
σ l

[
r S

xzl + μ

(
τ S
εl

τ S
σ l

− 1

)(
∂vz

∂x
+ ∂vx

∂z

)]
, (8-9)

where the definitions of the relevant variables and parameters are
shown in Appendix A.

Similar to the numerical scheme used by Bayliss et al. (1986)
and Xie & Yao (1988), we adopt the dimensional splitting method
(Strang 1968) and MacCormack algorithm (Gottlieb & Turkel 1976)
to construct the viscoelastic finite-difference scheme, which has an
accuracy that is second order in time and fourth order in space. The
MacCormack-type scheme dampens the spurious short-wavelength
numerical (non-physical) noise generated by media discontinu-
ities, computational-domain boundaries, grid discontinuities and
other computational irregularities. Furthermore, the inherent dis-
sipation can also eliminate the odd–even decoupling phenomenon
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Figure 3. A dispersion comparison of the GZB model (blue line) and K-F model (red line), including (a) the phase velocity and (b) attenuation coefficient
curves.

Figure 4. (a) Phase velocity and (b) group velocity curves calculated based on a model with a velocity of 3.0 km s−1 and Q = 60, 80, 100, 120 and 140 (colour
lines) at fr = 0.1, 1.0 and 10.0 Hz over the frequency range between 0.05 and 25 Hz.

(grid-to-grid oscillation) that exists in collocated-grid central finite-
difference schemes (Zhang & Chen 2006; Zhang et al. 2012).

The vectorized form of eq. (8) can be written as

∂U

∂t
= A

∂U

∂x
+ B

∂U

∂z
+ h, (9)

where U = (vxvz σxx σzz σxz r P
1 r S

xx1 r S
zz1 r S

xz1 · · · r P
4 r S

xx4 r S
zz4 r S

xz4)T is
the vector that composes of the velocities, stresses and memory
variables. A and B are coefficient matrixes that consist of viscoelastic
parameters. Additionally, h = CU + S, where C is the coefficient
matrix related to the memory variables and S is the source term. A 2-
D wave equation can be separated into two 1-D equations separately
in the x- and z-directions using the dimensional splitting method.
When assuming f = AU, the two 1-D partial differential equations
have the similar form of

∂U

∂t
= ∂ f

∂x
+ h. (10)

For the standard first-order partial differential eq. (10), the Mac-
Cormack scheme has the iterative formulae (Gottlieb & Turkel
1976)

U n
i = U n

i + �t

6�x

[
7
(

f n
i+1 − f n

i

)− ( f n
i+2 − f n

i+1

)]+ �t · hn
i ,

(11-1)

Table 1. Model parameters used in this study.

Layer Depth (km) Density (g cm−3) VP (km s−1) VS (km s−1) QP QS

1st 15.00 1.80 3.00 1.50 80 40
2nd ∞ 2.20 6.00 3.14 120 60

U n+1
i = 1

2

{
U n

i + U i + �t

6�x

[
7
(

f̄ i − f̄ i−1

)− ( f̄ i−1 − f̄ i−2

)]}

+ �t

2
h

n

i , (11-2)

with the stable condition �t
�x cmax ≤ 2

3 , where cmax is the highest
phase velocity of the medium, namely, the unrelaxation velocity at

infinite frequency cmax = cu =
√

MR
ρ

(
1 − L +

L∑
l=1

τεl
τσ l

)
.

The free-surface boundary condition severely affects the accuracy
of waveforms at the free surface, particularly for surface waves
(Kosloff & Carcione 2010). We extend the Stress Image Method
to the viscoelastic equations. The Stress Image Method keeps the
stresses and memory variables antisymmetric about a planar surface
in the vertical direction, while updating the velocity components of
ghost gridpoints above the free surface (Levander 1988; Robertsson
1996). Assuming that the free-surface boundary is set at j = 0 and
z-axis is downward positive, the stress and memory variables satisfy

σzz | j=0 = σxz | j=0 = 0, (12-1)
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Figure 5. Waveform comparisons between FDM (dashed blue line) and GRTM (solid red line) for horizontal (upper three panels) and vertical (lower three
panels) component records at a receiver located at 10 km from the source. The time–frequency envelope misfit (EM) and phase misfit (PM) were calculated
using the TF MISFIT GOF CRITERIA package (Kristeková et al. 2009).

r P
l

∣∣
j=0

= r S
zzl

∣∣
j=0

= r S
xzl

∣∣
j=0

= 0, (12-2)

where r P
l | j=0 = 0 is only valid for the wave equation of σzz in

eq. (8-4).
In the ghost-grid layers j < 0, the stresses satisfy

σzz | j=−1 = −σzz | j=1, σxz | j=−1 = −σxz | j=1, (13-1)

σzz | j=−2 = −σzz | j=2, σxz | j=−2 = −σxz | j=2. (13-2)

Because σxz and σzz equal to zero at j = 0, the velocities satisfy

∂vx

∂z
+ ∂vz

∂x
= 0, (14-1)
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Figure 6. Similar to Fig. 5, waveform comparisons between FDM and GRTM for records at a receiver located 20 km from the source.

π SP
L

(
∂vx

∂x
+ ∂vz

∂z

)
− 2μSS

L

∂vx

∂x
= 0, (14-2)

where all relevant parameters are shown in eq. (8). Fourth-order
central difference is used for horizontal derivatives ∂vx

∂x and ∂vz
∂x .

Second-order and fourth-order schemes are used for vertical deriva-
tives ∂vx

∂z and ∂vz
∂z to obtain vx and vz at ghost-grid layers j = −1 and

−2. At three remaining artificial boundaries, the damping boundary
of Cerjan et al. (1985) are adopted.

4 N U M E R I C A L VA L I DAT I O N

To validate the viscoelastic modeling method proposed in this study,
we compare our result with an analytical benchmark solution. Based
on the correspondence principle (Bland 1960), the dynamic solu-
tion for a viscoelastic model can be obtained from the solution of
the corresponding elastic model by Fourier transform of the elas-
tic solution to the frequency domain, replacement of the elastic
constants with the corresponding viscoelastic complex moduli and
transformation back to the time domain. We use the GRTM (Yao
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Figure 7. Simulated waveforms using FDM at reference frequency fr = 0.1 Hz. The colours indicate different Q values between 20 and 1000. The (a) horizontal
and (b) vertical component velocities are recorded at epicentral distances of 5, 10 and 15 km. The dashed rectangles in (a) indicate the regional waveforms,
which we amplified to explicitly display the details for the (c) direct P waves and (d) reflected P waves.

& Harkrider 1983; Chen 1993, 1999) to compute synthetic seis-
mograms in 2-D multilayered elastic media and convert them into
viscoelastic solutions.

The 2-D simulation is implemented in a two-layer model with a
size of 60 × 60 km and its parameters listed in Table 1. The source is
located at a depth of 5 km, and synthetic seismograms are calculated
at two surface locations with epicentral distances of 10 and 20 km.
The source mechanism is a 2-D explosion with a scalar moment
m0 = 1 × 1015 N m. The source time function is a Ricker wavelet
with a centre frequency fc = 1.0 Hz and a time-shift of 3.0 s. The
fine time and space intervals dt = 0.005 s and dx = dz = 0.05 km
are used to suppress the numerical dispersion. The grid size of the
discretized model is 1200 × 1200. The maximum frequency of the
Ricker wavelet is estimated to be 2.5 times the centre frequency and
the minimum sampling rate per wavelength (PPW ∼ 0.92vs

2.5· fc ·dx ) can
reach 11. We set fr = 10 Hz, and the Q values are QP = 80 and
QS = 40 for the first layer and QP = 100 and QS = 60 for the second
layer.

To quantitatively assess the consistency of synthetic seismograms
from two different methods, we use the misfit criteria developed by
Kristeková et al. (2006) to investigate the time–frequency misfit
and goodness of fit between the two sets of seismograms. The misfit
criteria include the time–frequency envelope (EM) and phase misfits
(PM), time-dependent EM and PM, frequency-dependent EM and
PM and single-valued EM and PM. The advantage of the joint time–
frequency judgment is that it can separate the EM and PM, while
providing the misfit information simultaneously in both the time
and frequency domains. The misfit criteria for the ‘excellent’ level
suggested in Kristeková et al. (2009) are ±0.22 for the EM, ±0.2 for
the PM and 8 for the goodness-of-fit value. All comparisons between
FDM and GRTM solutions in this study fall within the ‘excellent’
level. Here, we present the time–frequency EM and PM comparisons
and the global measurements of the agreement between the two
solutions, including the single-valued EM, PM, envelope goodness
of fit (EG) and phase goodness of fit (PG), all of which are calculated
using the TF MISFIT GOF CRITERIA package (Kristeková et al.
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Figure 8. Similar to Fig. 7, but for reference frequency fr = 1.0 Hz.

2009). Figs 5 and 6 show the time–frequency misfit and goodness-
of-fit at epicentral distances of 10 and 20 km, respectively. The
errors over the specified frequency range are less than 10 per cent,
and EG and PG, which represent the degree of agreement, are both
greater than 8. These values indicate that the two sets of results have
excellent levels of accordance.

Based on the two-layer model used in Section 2.2 to investigate
the effects of both Q and fr on dispersion, we compare synthetic
seismograms for different Q and fr. Figs 7–9 show the waveforms
for QP = QS = 20, 30, 40, 50, 60, 70, 80, 90, 100 and 1000 and
fr = 0.1, 1.0 and 10 Hz. The waveforms for Q = 1000 can be
considered to be a near-elastic model. The strong attenuation that
results from small Q values severely changes the amplitude and
frequency content of seismograms. As Q decreases, the amplitude
decreases and the signal becomes wider, due to the loss of high-
frequency contents. As mentioned above, the causal relationship
requires the attenuation be accompanied by dispersion. However,
the absolute phase velocity still depends on the selected reference
frequency, at which the phase velocity does not change. If fr is

chosen to be smaller than the dominant frequency band of the signal,
the attenuation causes the signal to arrive earlier. By contrast, if fr is
larger than the dominant frequency band, the attenuation can delay
the arrivals of the signal. The actual fr should be higher than the
main frequency band of the signal of interest.

5 D I S C U S S I O N A N D C O N C LU S I O N S

We constructed a viscoelastic model and proposed a four-SLS vis-
coelastic model with a trade-off between accuracy and efficiency.
Additionally, we adopted a new strategy in which the Q approxi-
mation procedure was separated from the simulation procedure. We
built a database that limited the Q to discrete values over a range
of 2–1000, which tremendously reduced the number of related vis-
coelastic parameters in the calculation. Thus, the finite-difference
calculation could directly obtain the corresponding viscoelastic pa-
rameters by calling the database, which greatly reduced the compu-
tation time for modeling.
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Figure 9. Similar to Fig. 7, but for reference frequency fr = 10.0 Hz.

We reformulated expressions of memory variables by separating
the P- and S-wave variables. We implemented 2-D time-domain
finite-difference viscoelastic modeling and validated the results
by comparing them with analytical solutions calculated using the
GRTM. The effects of both Q and fr on waveforms were verified.
Low Q values tended to attenuate more high-frequency content than
low-frequency content, thus reducing the signal amplitude and low-
ering the dominant frequency. Additionally, choosing the reference
frequency affected the arrival times of the signals. To simulate the
actual dispersion relationship in the real Earth, we suggest that the
reference frequency should be larger than the dominant frequency
band of the signal.
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A P P E N D I X A : D E R I VAT I O N O F T H E
F I R S T - O R D E R V I S C O E L A S T I C WAV E
E Q UAT I O N

The constitutive relationship eq. (1) for a linear elastic or viscoelas-
tic material can be described as

σi j = Gi jkl ∗ ε̇kl = Ġi jkl ∗ εkl (A1)

where ∗ denotes the convolution by which each strain history ε̇i j can
be transformed into the current stress value σi j (t). The dot denotes
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a time derivative and G is a fourth-order tensor called the relaxation
function. For an isotropic material, G degenerates into a second-
order tensor function and the constitutive relationship simplifies to
(Christensen 1982)

σi j = �̇ ∗ δi jεkk + 2Ṁ ∗ εi j , (A2)

where δij is the Kronecker delta and Einstein’s summation conven-
tion is used. � and M are the bulk and shear relaxation functions,
respectively. We define∏

= � + 2M (A3)

and use the standard linear solid model for � and M, that is,

∏
= π

(
1 −

L∑
l=1

(
1 − τ P

εl

τ P
σ l

)
e−t/τ P

σ l

)
θ (t) , (A4)

M = μ

(
1 −

L∑
l=1

(
1 − τ S

εl

τ S
σ l

)
e−t/τ S

σ l

)
θ (t) , (A5)

where π = λ + 2μ and λ and μ are the elastic Lamé parameters,
which describe the relaxation modulus of the medium. τ P

σ l and τ P
εl

are the stress and strain relaxation times for P waves, while τ S
σ l and

τ S
εl are the stress and strain relaxation times for S waves. θ (t) is

the Heaviside function and L is the number of standard linear solids
connected in parallel to model the relaxation functions. In this study,
we choose the optimal number L = 4.

Using the time derivative of the definition of strain,

ε̇i j = 1

2

(
∂iv j + ∂ jvi

)
, (A6)

where ∂iv j is the partial derivative applied on the jth velocity com-
ponent along the ith direction.

From the constitutive relationship,

σ̇i j = δi j

(∏̇
− 2Ṁ

)
∗ ∂kvk + Ṁ ∗ (∂iv j + ∂ jvi

)
. (A7)

By inserting the standard linear solid expressions (add number
of equations) for � and M and performing the time differentiation
for each of their factors, substituting i, j for x, z, we obtain

σ̇xx =
{

π

[
1 −

L∑
l=1

(
1 − τ P

εl

τ P
σ l

)]
− 2μ

[
1 −

L∑
l=1

(
1 − τ S

εl

τ S
σ l

)]}

×
(

∂vx

∂x
+ ∂vz

∂z

)
+ 2μ

[
1 −

L∑
l=1

(
1 − τ S

εl

τ S
σ l

)]
∂vx

∂x

+
L∑

l=1

r P
xxl +

L∑
l=1

r S
xxl (A8)

σ̇zz =
{

π

[
1 −

L∑
l=1

(
1 − τ P

εl

τ P
σ l

)]
− 2μ

[
1 −

L∑
l=1

(
1 − τ S

εl

τ S
σ l

)]}

×
(

∂vx

∂x
+ ∂vz

∂z

)
+ 2μ

[
1 −

L∑
l=1

(
1 − τ S

εl

τ S
σ l

)]
∂vz

∂z

+
L∑

l=1

r P
zzl +

L∑
l=1

r S
zzl (A9)

σ̇xz = μ

[
1 −

L∑
l=1

(
1 − τ S

εl

τ S
σ l

)](
∂vz

∂x
+ ∂vx

∂z

)
+

L∑
l=1

r S
xzl , (A10)

where

r P
xxl = π

1

τ P
σ l

(
1 − τ P

εl

τ P
σ l

)
e

−t
/

τ P
σ l θ (t) ∗

(
∂vx

∂x
+ ∂vz

∂z

)
, (A11)

r S
xxl = −2μ

1

τ S
σ l

(
1 − τ S

εl

τ S
σ l

)
e

−t
/

τ S
σ l θ (t) ∗ ∂vz

∂z
, (A12)

r P
zzl = π

1

τ P
σ l

(
1 − τ P

εl

τ P
σ l

)
e

−t
/

τ P
σ l θ (t) ∗

(
∂vx

∂x
+ ∂vz

∂z

)
, (A13)

r S
zzl = −2μ

1

τ S
σ l

(
1 − τ S

εl

τ S
σ l

)
e

−t
/

τ S
σ l θ (t) ∗ ∂vx

∂x
, (A14)

r S
xzl = μ

1

τ S
σ l

(
1 − τ S

εl

τ S
σ l

)
e

−t
/

τ S
σ l θ (t) ∗

(
∂vz

∂x
+ ∂vx

∂z

)
, (A15)

are the memory variables, with the subscript l ∈ [1, L] .
The expressions of r P

xxl and r P
zzl are identical and can be converted

into a single expression:

r P
l = π

1

τ P
σ l

(
1 − τ P

εl

τ P
σ l

)
e

−t
/

τ P
σ l θ (t) ∗

(
∂vx

∂x
+ ∂vz

∂z

)
. (A16)

Similarly, we conduct time differentiation for the four memory
variables and obtain

ṙ P
l = − 1

τ P
σ l

[
r P

l + π

(
τ P
εl

τ P
σ l

− 1

)(
∂vx

∂x
+ ∂vz

∂z

)]
, (A17)

ṙ S
xxl = − 1

τ S
σ l

[
r S

xxl − 2μ

(
τ S
εl

τ S
σ l

− 1

)
∂vx

∂x

]
, (A18)

ṙ S
zzl = − 1

τ S
σ l

[
r S

zzl − 2μ

(
τ S
εl

τ S
σ l

− 1

)
∂vz

∂z

]
, (A19)

ṙ S
xzl = − 1

τ S
σ l

[
r S

xzl + μ

(
τ S
εl

τ S
σ l

− 1

)(
∂vz

∂x
+ ∂vx

∂z

)]
. (A20)

Following Robertsson et al. (1994), the velocity–stress formu-
lation of the viscoelastic wave equations can be derived from the
constitutive relationship and the momentum conservation equation.
In 2-D, with L as the number of standard linear solids, the viscoelas-
tic wave equations are

ρv̇x = ∂σxx

∂x
+ ∂σxz

∂x
+ fx (A21)

ρv̇z = ∂σxz

∂z
+ ∂σzz

∂z
+ fz (A22)

σ̇xx = π SP
L

(
∂vx

∂x
+ ∂vz

∂z

)
− 2μSS

L

∂vz

∂z
+ T P + T S

xx , (A23)

σ̇zz = π SP
L

(
∂vx

∂x
+ ∂vz

∂z

)
− 2μSS

L

∂vx

∂x
+ T P + T S

zz, (A24)

σ̇xz = μSS
L

(
∂vz

∂x
+ ∂vx

∂z

)
+ T S

xz, (A25)
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where

SP
L = 1 −

L∑
l=1

(
1 − τ P

εl

τ P
σ l

)
, (A26)

SS
L = 1 −

L∑
l=1

(
1 − τ S

εl

τ S
σ l

)
, (A27)

T P =
L∑

l=1

r P
l , (A28)

T P
zz =

L∑
l=1

r P
zzl , (A29)

T S
zz =

L∑
l=1

r S
zzl , (A30)

T S
xz =

L∑
l=1

r S
xzl , (A31)

and where r P
i jl and r S

i jl are the memory variables, which can be
described as

ṙ P
l = − 1

τ P
σ l

[
r P

l + π

(
τ P
εl

τ P
σ l

− 1

)(
∂vx

∂x
+ ∂vz

∂z

)]
, (A32)

ṙ S
xxl = − 1

τ S
σ l

[
r S

xxl − 2μ

(
τ S
εl

τ S
σ l

− 1

)
∂vx

∂x

]
, (A33)

ṙ S
zzl = − 1

τ S
σ l

[
r S

zzl − 2μ

(
τ S
εl

τ S
σ l

− 1

)
∂vz

∂z

]
, (A34)

ṙ S
xzl = − 1

τ S
σ l

[
r S

xzl + μ

(
τ S
εl

τ S
σ l

− 1

)(
∂vz

∂x
+ ∂vx

∂z

)]
. (A35)

Eqs (A21)–(A25) and (A32)–(A35) form the wave propagation
equations of the viscoelastic media.

A P P E N D I X B : D I S P E R S I O N F O R M U L A

The complex phase velocity of a viscoelastic model can be ex-
pressed as

c (ω) =
√

M(ω)

ρ
. (B1)

Substituting the complex modulus M (ω), which can be obtained
from eqs (2) and (3), into the above equation, we obtain

c (ω) = cr

√√√√(1 − L +
L∑

l=1

1 + iωτεl

1 + iωτσ l

)
, (B2)

where cr =
√

MR
ρ

is the relaxed velocity of the medium.

According to the definition of the complex wavenumber k(ω) =
ω

c(ω) and k(ω) = κ(ω) − i · α(ω), where κ(ω) = Re[k(ω)] is the real
wavenumber and α(ω) = −Im[k(ω)] is the attenuation factor (Aki
& Richards 1980). We derive the expression of the relevant disper-
sion variables of the GSLS viscoelastic model.

The phase velocity can be expressed as (Aki & Richards 1980)

cp (ω) = ω

κ (ω)
. (B3)

Substituting eq. (B1) into eq. (B2), we obtain the following ex-
pression of the phase velocity:

cp (ω) = 1

Re
[
1/

c (ω)

] = cR
2 (ω) + cI

2 (ω)

cR (ω)
, (B4)

where cR(ω) and cI(ω) are the real and imaginary parts of the com-
plex velocity c (ω), respectively.

The definition of the group velocity is (Aki & Richards 1980)

cg (ω) = dω

dκ (ω)
. (B5)

Substituting eq. (B1) into eq. (B4), we obtain the following ex-
pression of the group velocity

cg (ω) =
(

dκ (ω)

dω

)−1

=
⎛
⎝Re

⎡
⎣d

(
ω

c(ω)

)
dω

⎤
⎦
⎞
⎠

−1

=
(

Re

[
c (ω) − ω · dc(ω)

dω

c(ω)2

])−1

. (B6)

Substituting MR (eq. (7)) and c(ω) (eq. (B2)) into eqs (B4) and
(B6), we can obtain the phase and group velocity equations related
to the viscoelastic parameters.
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