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ABSTRACT

The discontinuous-grid method can greatly reduce the
storage requirements and computational costs of finite-dif-
ference (FD) modeling for large-velocity-contrast models.
However, traditional discontinuous-grid methods have to
use interpolation when refining the wavefield in transition
zones and would cause apparent artifacts. We have devel-
oped a new discontinuous collocated-grid scheme for high-
order FD modeling. We refined the wavefield on a rotated
coordinate system, where the interpolation is not required
again. The horizontal and vertical spatial derivatives can be
accurately converted into diagonal derivatives within the ro-
tated coordinate system; thus, our scheme would be free of
artifacts caused by improper interpolation. The ratio from
coarse- to fine-grid spacing is restricted to 2n for our scheme,
where n is a positive integer. Numerical experiments demon-
strate that the proposed discontinuous collocated-grid scheme
reduces the artificial reflections by about two orders of mag-
nitude compared to the interpolation scheme and yields a
wavefield that is almost identical to that of the uniform-grid
simulation. The rotated FD operator with arbitrary even-order
accuracy is applied in the transition zones; thus, it signifi-
cantly improves the spatial accuracy while saving computa-
tional cost.

INTRODUCTION

Large velocity contrasts extensively exist within the earth. In uni-
form-grid finite-difference (FD) modeling, the grid spacing is small
enough to achieve sufficient accuracy, because the grid spacing is
constrained by the lowest velocity in the model. This requirement

would cause oversampling in high-velocity areas. To lower the stor-
age requirements and reduce computational costs, a nonuniform-
grid modeling technique has been widely applied using fine and
coarse grids to discretize low- and high-velocity areas, respectively
(e.g., Jastram and Tessmer, 1994; Moczo et al., 1996; Wang and
Takenaka, 2001; Kang and Baag, 2004a; Wu et al., 2005; Zhang
et al., 2008).
There are two primary types of nonuniform grid schemes, as

shown in Figure 1. The shaded areas illustrate low-velocity regions
with local fine gridding using continuous-grid (Figure 1a) and dis-
continuous-grid (Figure 1b) schemes. These two schemes are cat-
egorized according to whether they use interpolation to refine the
wavefield in transition regions in which the fine and coarse grids
overlap. The conventional FD operator depends on a few grid points
in the horizontal and vertical directions that are usually located sym-
metrically around a central point at which the local derivative is
computed. As shown in Figure 1a, there is no discontinuous point
located on the grid line; consequently, a high-order FD operator can
be applied over the entire region (e.g., Falk et al., 1996; Opršal and
Zahradnik, 1999; Pitarka, 1999; Wu et al., 2005). As shown in Fig-
ure 1b, the low-velocity area is discretized using a fine grid and the
interpolation is required to refine the wavefield from the coarse grid
to the fine grid (e.g., Jastram and Behle, 1992; Jastram and Tessmer,
1994; Wang and Schuster, 1996; Liu et al., 2014). The continuous-
grid scheme has accuracy similar to the traditional uniform-grid FD
method using the fine grid, but it saves less computational cost
compared with the discontinuous-grid scheme. Therefore, discon-
tinuous-grid schemes are widely used because of their great flexi-
bility and high efficiency (e.g., Aoi and Fujiwara, 1999; Hayashi
et al., 2001; Wang et al., 2001; Kristek et al., 2010; Zhang et al.,
2013).
However, traditional discontinuous-grid schemes have to use in-

terpolation, which would lead to apparent artificial noises (Aoi and
Fujiwara, 1999; Kang and Baag, 2004b). Aoi and Fujiwara (1999)
quantitatively evaluate the accuracy of the interpolation in the dis-
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continuous-grid FD method. They conclude that interpolation errors
become smaller when the number of grid points per wavelength is
larger. For this reason, most discontinuous-grid methods tend to use
small grid spacing and those FD schemes with low-order spatial
accuracy. Moreover, interpolation errors would be aggravated when
wavefield are propagating within the media; therefore, the overall
accuracy of the discontinuous-grid FD method would decrease.
Some efforts have been made to improve the linear interpolation
technique (Wang et al., 2001; Wang and Takenaka, 2001) or to de-
crease the number of interpolation points using decreasing accurate
FD operators toward the border of the fine grid in the transition
zones (Kristek et al., 2010). However, neither of these two tech-
niques effectively eliminates the artifacts caused by the interpo-
lation.
In this paper, we present a new discontinuous collocated-grid

method for high-order FD modeling. We suggest using a rotated
FD operator to avoid using the interpolation. The new scheme re-
tains the accuracy of the continuous-grid scheme and the flexibility
and efficiency of the discontinuous-grid scheme. In the “Method-
ology” section, we describe the methodology of our scheme for the
2D acoustic wave equation. In the “Numerical experiments” sec-
tion, we demonstrate the accuracy and efficiency of the scheme us-
ing a 2D acoustic homogeneous model. The last section of this
paper presents our conclusions.

METHODOLOGY

In this section, we illustrate the methodology of the new discon-
tinuous collocated-grid method with the 2D acoustic wave equation,
which can be written in the following form:

1

c2
∂2u
∂t2

¼ ∂2u
∂x2

þ ∂2u
∂z2

; (1)

where u is the displacement and c is the velocity of the acous-
tic wave.
As shown in Figure 2, a fine grid is used in the upper region (the

area composed of empty squares), whereas a coarse grid is used in
the lower region (the area composed of empty circles). The horizon-
tal and vertical spacings are Δx and Δz within the fine-gridded re-
gion and 2Δx and 2Δz within the coarse-gridded region; i.e., the
ratio of the coarse-grid spacing to the fine-grid spacing is 2. Because
the horizontal grid spacing is always constant, the second deriva-

tives in the x-direction are approximated using the conventional
high-order FD scheme. Difficulties arise in the computation of ver-
tical derivatives, especially near the border between the finely and
coarsely gridded regions.
The second derivative in the z-direction on the fine grid is ap-

proximated by the conventional high-order FD scheme, which is
given by

∂2u
∂z2

≈
1

ðΔzÞ2
XK
i¼1

αi½uðx; zþ iΔzÞ þ uðx; z − iΔzÞ

− 2uðx; zÞ�. (2)

The corresponding expression for the coarse grid is

∂2u
∂z2

≈
1

ð2ΔzÞ2
XK
i¼1

αi½uðx; zþ 2iΔzÞ þ uðx; z − 2iΔzÞ

− 2uðx; zÞ�; (3)

where 2K is the order or length of the FD operator, and αi is the
constant coefficient of the conventional FD operator, which can be
calculated through the conventional method (Fornberg, 1988) or us-
ing the optimization method (Liu and Sen, 2009; Zhang and Yao,
2013a, 2013b).
If the spacings are changed at a depth z0 ¼ lΔz (Figure 2), equa-

tion 2 can be used for the FD operator of length 2K down to z ¼
ðl − KÞΔz and equation 3 can be used from depth z ¼ lΔz down-
ward. At the remaining ðK − 1Þ grid points in the transition region
(the circumscribed empty squares in Figure 2), the derivative can be
approximated as follows (Jastram and Behle, 1992):

∂2u
∂z2

≈
1

ðΔzÞ2
Xm
i¼1

αmi ½uðx; zþ iΔzÞ

þ uðx; z − iΔzÞ − 2uðx; zÞ�

þ 1

ðΔzÞ2
XK

i¼mþ1

αmi ½uðx; zþ ðmþ 2ði −mÞÞΔzÞ

þ uðx; z − ðmþ 2ði −mÞÞΔzÞ − 2uðx; zÞ�; (4)

Figure 1. Grid configuration for two types of non-
uniform-grid FD modeling methods. The shaded
areas represent low-velocity blocks that should
be discretized using a fine grid. (a) A continu-
ous-grid scheme requires that the grid points are
continuous along both axes throughout the entire
region. (b) A discontinuous-grid scheme allows
for discontinuous points along grid lines in the
transition region but requires interpolation at the
positions of the missing points in the coarsely
gridded region near the boundary with the finely
gridded region.
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where m is half of the number of points with small spacing Δz in-
volved in the FD operator and satisfies m < K. Figure 2 shows the
differencing stencils at selected typical grid point positions in the
transition region for the FD operator of length 2K ¼ 6. The coef-
ficients of the FD operator αmi are obtained by solving the following
matrix equation (Huang and Dong, 2009):

2
6666666666666664

12 22 ··· m2 ðmþNÞ2 ··· ðmþði−mÞNÞ2 ··· ðmþðK−mÞNÞ2

14 24 ··· m4 ðmþNÞ4 ··· ðmþði−mÞNÞ4 ··· ðmþðK−mÞNÞ4

..

. ..
. . .

. ..
. ..

. . .
. ..

. . .
. ..

.

12i 22i ··· m2i ðmþNÞ2i ··· ðmþði−mÞNÞ2i ··· ðmþðK−mÞNÞ2i

..

. ..
. . .

. ..
. ..

. . .
. ..

. . .
. ..

.

12K 22K ··· m2K ðmþNÞ2K ··· ðmþði−mÞNÞ2K ··· ðmþðK−mÞNÞ2K

3
7777777777777775

2
6666666666666664

αm1

αm2

..

.

αmi

..

.

αmK

3
7777777777777775

¼

2
6666666666666664

1

0

..

.

0

..

.

0

3
7777777777777775

; (5)

where i ¼ 1;2; 3; · · · ; K and N ¼ 2 is the ratio of the coarse-grid
spacing to the fine-grid spacing.
Conventionally, the wavefield of K layers outside the boundary

of the fine grid must be interpolated on the coarse grid to calculate
the spatial derivatives at discontinuous grid points (e.g., Jastram and
Behle, 1992; Zhang et al., 2013). To avoid the artifacts caused by

the inaccurate interpolation, we propose a rotated FD operator to
avoid interpolation entirely such that high-order spatial accuracy
can be retained in the transition region. Similar to the idea of
the rotated staggered-grid FD scheme shown in Figure 3, the hori-
zontal and vertical derivatives can be converted into diagonal deriv-
atives (Saenger et al., 2000). The new coordinate system ðx∼; z∼Þ is
rotated with respect to the conventional coordinate system ðx; zÞ, for
which the horizontal and vertical spacings are Δx and Δz,
respectively (Figure 3). Thus, we obtain the first and second deriv-
atives:

∂
∂x

¼ Δr
2Δx

�
∂
∂ ~x

−
∂
∂~z

�
;

∂
∂z

¼ Δr
2Δz

�
∂
∂ ~x

þ ∂
∂~z

�
; (6)

∂2

∂x2
¼ Δr2

4Δx2

�
∂2

∂ ~x2
þ ∂2

∂~z2
− 2

∂2

∂ ~x∂~z

�
;

∂2

∂z2
¼ Δr2

4Δz2

�
∂2

∂ ~x2
þ ∂2

∂~z2
þ 2

∂2

∂ ~x∂~z

�
; (7)

where Δr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔxÞ2 þ ðΔzÞ2

p
.

As is usually the case, Δx ¼ Δz; thus, for the 2D acoustic wave
equation, we obtain

∂2u
∂x2

þ ∂2u
∂z2

¼ ∂2u
∂~x2

þ ∂2u
∂~z2

: (8)

The second derivatives in the new coordinate system ð~x; ~zÞ are
approximated using the following high-order FD scheme:

Figure 2. Grid configuration for the proposed
scheme of refining the wavefield on a rotated co-
ordinate system. A fine grid (empty squares) is
used in the upper region, and a coarse grid (empty
circles) is used in the lower region. The horizontal
and vertical spacings are Δx and Δz within the
finely gridded region and 2Δx and 2Δz within
the coarsely gridded region. The shaded area rep-
resents the transition zone, in which the fine and
coarse grids meet with a spatial accuracy of
2K ¼ 6. Differencing stencils of the vertical deriv-
atives for several typical points (circumscribed
empty squares and circumscribed solid circles)
in the transition zone are shown. At the missing
grid points (solid circles), we use the rotated
FD operator to calculate the horizontal and vertical
derivatives.
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∂2u
∂ ~x2

≈
1

ðΔrÞ2 α
1
i ½uðxþ iΔx; zþ iΔzÞ

þ uðx − iΔx; z − iΔzÞ − 2uðx; zÞ�

þ 1

ðΔrÞ2
XK
i¼2

α1i ½uðxþ ð2i − 1ÞΔx; zþ ð2i − 1ÞΔzÞ

þ uðx − ð2i − 1ÞΔx; z − ð2i − 1ÞΔzÞ − 2uðx; zÞ�; (9)

∂2u
∂~z2

≈
1

ðΔrÞ2 α
1
i ½uðxþ iΔx; z− iΔzÞ

þuðx− iΔx;zþ iΔzÞ− 2uðx; zÞ�

þ 1

ðΔrÞ2
XK
i¼2

α1i ½uðxþð2i− 1ÞΔx; z− ð2i− 1ÞΔzÞ

þuðx− ð2i− 1ÞΔx;zþð2i− 1ÞΔzÞ− 2uðx;zÞ�; (10)

in which the constant coefficients α1i are the solutions to equation 5
form ¼ 1. The spatial accuracy is still 2K. Therefore, the vertical and
horizontal derivatives at all of the missing points (solid circles in Fig-
ure 2) can be obtained using the rotated FD operator described in
equations 9 and 10. In summary, we can obtain the spatial derivatives
at all points in the transition region with 2K-order spatial accuracy.
The temporal derivatives in equation 1 are obtained using the sec-

ond-order conventional FD operator:

∂2u
∂t2

≈
1

ðΔtÞ2 ½ðtþ ΔtÞ þ uðt − ΔtÞ − 2uðtÞ�: (11)

We have illustrated the methodology of discontinuous collo-
cated-grid FD modeling for a spacing ratio N ¼ 2, but we find that
this method does not extend to N ¼ 3. However, the scheme for
N ¼ 2 can be repeated n times to achieve N ¼ 2n. The methodol-
ogy for N ¼ 2n is illustrated in Figure 4. Note that beneath every
boundary between grids with different spacings, a buffer zone must
exist. For example, when transitioning from a spacing of 2iΔx to
2iþ1Δx, a buffer layer of minimal size ð2K − 1Þ2iþ1Δxmust exist in
the coarser grid. Figure 4 shows the setup for a spacing change from
Δx to 8Δx with a spatial accuracy of 2K ¼ 6.

Nonreflecting boundaries are needed in realistic simulations.
Here, we apply the perfectly matched layer (PML) as the absorbing
boundary. The PML equations for the 2D acoustic wave equation
are written as follows (Liu et al., 2012):

�
∂
∂t

þ dðxÞ
�

2

u1 ¼ c2
�
∂2u
∂x2

þ P1

�
;

�
∂
∂t

þ dðzÞ
�

2

u2 ¼ c2
�
∂2u
∂z2

þ P2

�
;

�
∂
∂t

þ dðxÞ
�
P1 ¼ −d 0ðxÞ ∂u

∂x
;

�
∂
∂t

þ dðzÞ
�
P2 ¼ −d 0ðzÞ ∂u

∂z
; (12)

Figure 3. The rotated coordinates used in our scheme. The conven-
tional 2D Cartesian coordinate system ðx; zÞ is rotated to a new co-
ordinate system ð ~x; ~zÞ with horizontal and vertical spacings of Δx
and Δz, respectively.

Figure 4. Grid configuration in the case of grid spacing changing
from Δx to 8Δx. The spatial accuracy of the FD operator is of
2K ¼ 6. The solid circles denote the positions of points at which
rotated FD operators are used to calculate the horizontal and vertical
derivatives.
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where u1 and u2 are the splitting wavefields, u ¼ u1 þ u2, P1 and
P2 are the auxiliary variables, dðxÞ and dðzÞ are the damping func-
tions (Collino and Tsogka 2001), and d 0ðxÞ and d 0ðzÞ are the spatial
first derivatives of dðxÞ and dðzÞ, respectively. We use a damping
function

dðxÞ ¼ 3c
2δ

log

�
1

R

��
x
δ

�
2

; (13)

where R ¼ 0.001, x is the distance from the point of interest to the
PML interface with the interior region, and δ is the thickness of the
PML layers.
The spatial first derivative in equation 12 in the transition zone of

the PML layers can be approximated by

∂u
∂z

≈
1

Δz

Xm
i¼1

βmi ½uðx; zþ iΔzÞ − uðx; z − iΔzÞ�

þ 1

Δz

XK
i¼mþ1

βmi ½uðx; zþ ðmþ 2ði −mÞÞΔzÞ

− uðx; z − ðmþ 2ði −mÞÞΔzÞ�; (14)

where the coefficients βmi are calculated using the following
equation:

2
66666666666666664

1 2 ··· m ðmþNÞ ··· ðmþði−mÞNÞ ··· ðmþðK−mÞNÞ

13 23 ··· m3 ðmþNÞ3 ··· ðmþði−mÞNÞ3 ··· ðmþðK−mÞNÞ3

..

. ..
. . .

. ..
. ..

. . .
. ..

. . .
. ..

.

12i−1 22i−1 ··· m2i−1 ðmþNÞ2i−1 ··· ðmþði−mÞNÞ2i−1 ··· ðmþðK−mÞNÞ2i−1

..

. ..
. . .

. ..
. ..

. . .
. ..

. . .
. ..

.

12K−1 22K−1 ··· m2K−1 ðmþNÞ2K−1 ··· ðmþði−mÞNÞ2K−1 ··· ðmþðK−mÞNÞ2K−1

3
77777777777777775

×

2
66666666666666664

βm1

βm2

..

.

βmi

..

.

βmK

3
77777777777777775

¼

2
66666666666666664

1
2

0

..

.

0

..

.

0

3
77777777777777775

: (15)

As in the calculation of the spatial second derivatives using the
rotated FD operator, we use equations 6 and 14 to obtain the first
derivatives in the PML layers.
The total thickness of the PML layers is the same within both the

fine and coarse grids. For example, for a grid spacing ratio of
N ¼ 2, if the number of PML layers in the coarse grid is 20, then
the number in the fine grid is 40. The first layer of the PML should
be aligned within the fine and coarse grids. Thus, the damping func-
tions dðxÞ on each PML layers are the same, which guarantees sim-
ilar absorbing effects on the discontinuous grid.
Because we merely replace the interpolation operator with the

rotated FD operator at the missing points, the computational costs

Figure 5. Snapshots of the wavefield (e-h) at a traveltime of 13.6 s. These wavefields are calculated by interpolation scheme 1 (a), interpolation
scheme 2 (b), our rotated FD scheme (c) and the uniform-grid scheme (d), respectively. The black crosses in (a and b) denote the grid points at
which the wavefield values are interpolated, and the solid circles in (c) denote the grid points at which the wavefield values are calculated using
the rotated FD operator. Fine and coarse grids are used in the upper and lower regions, respectively, and the boundary of the two subregions is
located at a depth of z ¼ 43.75 km (indicated by the dashed lines in [e-g]).
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of the two methods are almost the same for N ¼ 2. ForN > 2, some
buffer layers exist. However, in practice, values of N ¼ 2 or 4 are
most commonly used. Consequently, the buffer layers are relatively
small compared with the entire model domain, and thus the added
computational expense is negligible.

NUMERICAL EXPERIMENTS

To demonstrate the accuracy of our discontinuous-grid method,
we compare our scheme with the interpolation scheme and the
uniform-grid FD scheme by performing numerical tests with a
2D homogeneous acoustic model. The size of the model is
62.5 × 62.5 km2, and the wave velocity is c ¼ 2000 m∕s. The
upper region uses a small grid spacing of Δx ¼ Δz ¼ 125 m, and
the lower region uses a large grid spacing of 2Δx. The boundary of
the two subregions is located at a depth of z ¼ 43.75 km (which is
indicated by the dashed lines in Figure 5e–5g). The source is located
at the center of the model domain (31.25 km, 31.25 km). The source
time function is a Ricker wavelet with a center frequency of 1.0 Hz
and a time shift of 1.2 s.
We compare the simulation snapshots using four different FD

schemes: interpolation scheme 1 (Figure 5a) (Jastram and Behle,
1992), interpolation scheme 2 (Figure 5b), the rotated FD scheme
(Figure 5c), and the uniform-grid scheme (Figure 5d). The crosses

in Figure 5a and 5b denote missing grid points at which interpola-
tion is performed. The interpolation technique used in our study is
linear interpolation. The solid circles in Figure 5c denote the miss-
ing grid points at which a rotated FD operator is used. All the differ-
ent FD schemes in Figure 5a–5d are with a tenth-order spatial
accuracy and second-order temporal accuracy for solving the 2D
acoustic wave equation. Figure 5e–5h shows snapshots of the wave-
field at a time of 13.6 s calculated by the different FD schemes
shown in Figure 5a–5d. The interpolation scheme introduces ob-
vious artificial noises (Figure 5e and 5f) that are reflected off of
the interface of the spacing change (the dashed lines in Figure 5e
and 5f); these reflections do not appear in the rotated FD scheme
(Figure 5g), and the uniform-grid FD scheme (Figure 5h). Figure 5g
suggests that our scheme effectively reduces the artificial reflec-
tions. Figure 6a compares four seismograms at the same location
(31.25 km, 25 km) using interpolation scheme 1 (black dashed line),
interpolation scheme 2 (gray dotted line), the rotated FD scheme
(gray solid line), and the uniform-grid scheme (black solid line).
Artificial reflections emerge at approximately 17 s and have ampli-
tudes that are much less than that of the direct wave. However, if
one or more velocity-change interfaces exist in the model, these ar-
tificial reflections are significant compared with the real reflections
and thus cannot be ignored in practical applications. Figure 6b
shows a magnified view of the region in which the artificial reflec-
tions occur (dashed box in Figure 6a). The maximum amplitudes of
the seismograms between 16 and 18.5 s are 0.025390 (interpolation
scheme 1), 0.085223 (interpolation scheme 2), 2.7769 × 10−04 (ro-
tated FD scheme), 2.0304 × 10−04(uniform-grid scheme) respec-
tively. It is obvious that the two interpolation schemes both
produce artificial reflections and the reflection of scheme 2 is larger
than that of scheme 1. Our scheme produces no artificial reflection
and yields a wavefield that is almost identical to that of the uniform-
grid simulation.
Similar to the results of the stability tests of the discontinuous

grid in the collocated-grid FD method that uses the dispersion re-
lation preserving/optimization (DRP/opt) MacCormack scheme de-
scribed in Zhang et al. (2013), we find that our scheme remains

Figure 6. (a) Seismograms measured by a receiver using different
methods. The results are obtained from interpolation scheme 1
(black dashed line), interpolation scheme 2 (gray dotted line),
our rotated FD scheme (gray solid line), and the uniform-grid
scheme (black solid line). The direct waves arrive at approximately
4 s, and artificial reflections emerge at approximately 17 s. The am-
plitudes of the artificial reflections are much less than that of the
direct wave. (b) A magnified view of the amplified artificial reflec-
tions in the dashed box of (a).

Figure 7. Numerical stability tests for a grid spacing ratio ofN ¼ 4.
(a-c) Seventy-five thousand time steps using interpolation schemes
1 and 2 and the rotated FD scheme, respectively. The seismograms
are truncated when the amplitudes of the instability reach the maxi-
mum amplitude of the direct wave.
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stable over long time periods for a grid-spacing ratio N ¼ 2 in a
homogeneous medium. Instability problems occur only with large
grid-spacing ratios (N > 2). We implement another numerical test
for a grid-spacing ratio of N ¼ 4; in this case, the grid spacing must
change twice within our scheme. Figure 7 shows the results of
75,000 time steps using interpolation schemes 1 (Figure 7a) and
2 (Figure 7b) and our rotated FD scheme (Figure 7c). It is obvious
that our scheme suffers from an instability problem like the other
method, although it is not that serious. Kristek et al. (2010) note that
such instabilities primarily result from small-wavelength signal
components in the fine grid that cannot propagate into the coarse
grid. To solve the instability problem, Kristek et al. (2010) introduce
a Lanczos filter for a 3D staggered-grid FD scheme. However,
Zhang et al. (2013) find that the Lanczos filter is not compatible
with the collocated-grid DRP/opt MacCormack scheme and intro-
duce a Gaussian filter instead. It seems that a general downsampling
filter that can work with different FD schemes does not exist. We
tested these two downsampling filters and found that neither works
with our scheme. Thus, in future work, a proper downsampling fil-
ter should be determined to solve the instability problem.

CONCLUSIONS

Conventional discontinuous-grid FD modeling uses the interpola-
tion to obtain the wavefield at missing grid points in the transition
region; however, the interpolation greatly decreases the computational
accuracy due to apparent artificial reflections from the boundary of the
two grid systems. We present a new discontinuous collocated-grid
scheme for high-order FD modeling that uses a rotated FD operator
at the missing grid points. We illustrate the scheme by solving the 2D
acoustic wave equation. The ratio of the coarse-grid spacing to fine-
grid spacing is restricted to 2n, where n is a positive integer. By com-
paring our results with those of interpolation schemes in a 2D homo-
geneous acoustic medium, we find that our scheme effectively reduces
artificial reflections withminimal extra computational costs. However,
our scheme exhibits instability problems like traditional methods. Ex-
tension of the 2D acoustic implementation of our scheme to 2D and
3D elastic modeling is straightforward and exhibits no additional tech-
nical problems.
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