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ABSTRACT

We have developed an optimal method to determine expan-
sion parameters for flexible stencils in 2D scalar-wave finite-
difference frequency-domain (FDFD) simulation. Our stencil
only requires the involved grid points to be paired and rota-
tionally symmetric around the central point. We apply this
method to the transition zone in discontinuous-grid modeling,
in which the key issue is designing particular FDFD stencils to
correctly propagate the wavefield passing through the discon-
tinuous interface. Our method can work in an FDFD discon-
tinuous grid with arbitrary integer coarse- to fine-grid spacing
ratios. Numerical examples are developed to determine how
to apply this optimal method to discontinuous-grid FDFD
schemes with spacing ratios of 3 and 5. The synthetic wave-
fields are highly consistent to those calculated using the con-
ventional dense uniform grid, and the memory requirement
and computational costs are greatly reduced. For velocity
models with large contrasts, our discontinuous-grid FDFD
method can significantly improve the computational efficiency
in forward modeling, imaging, and full-waveform inversion.

INTRODUCTION

Full-waveform inversion (FWI) is considered to be a promising
technique for retrieving the subsurface velocity structure. It heavily
relies on forward modeling during iterations in the optimization proc-
ess. The modeling can be performed either in the frequency or
time domain. Frequency-domain FWI becomes attractive because it
can be naturally built into multiscale approaches to mitigate cycle
skipping, conveniently handle independent frequencies and multishot

computations, or easily include the frequency-dependent attenuation.
Another advantage is that the frequency-domain method does not
need to store wavefield values when calculating the gradient (Vigh
and Starr, 2008; Virieux and Operto, 2009). Frequency-domain fi-
nite-difference (FDFD) forward modeling is an important part of fre-
quency-domain FWI. Great efforts have been made to develop
optimal FDFD operators. Jo et al. (1996) propose an optimal nine-
point scheme based on rotated FDFD operators. Succeeding re-
searchers extended this idea to other FDFD schemes, such as acoustic
25- and 17-point schemes, and certain elastic and viscoelastic appli-
cations (e.g., Shin and Sohn, 1998; Štekl and Pratt, 1998; Hustedt
et al., 2004; Operto et al., 2007, 2009, 2014; Cao and Chen, 2012).
Min et al. (2000) propose the weighted-average method to simplify
the optimal procedure of Jo et al. (1996), which was later applied to
other cases (e.g., Gu et al., 2013; Yang and Mao, 2016). Targeted to
cases with different vertical and horizontal spacings, Chen (2012)
proposes a new optimal nine-point scheme based on the average-
derivative method (ADM), and it has been extended to other cases
(e.g., Tang et al., 2015; Zhang et al., 2015; Chen and Cao, 2016,
2018). However, these optimized operators cannot be easily ex-
panded from the commonly used nine-point scheme to other schemes
with different FDFD stencils. Therefore, similar to the finite-differ-
ence time-domain (FDTD) optimization operators (Holberg, 1987;
Etgen, 2007;Wang et al., 2019a), a general optimized FDFD operator
was proposed by Fan et al. (2017) based on solving the frequency-
domain 2D scalar-wave equation. Most previous FDFD schemes can
be treated as special cases under this framework. In addition, appli-
cations of this optimal procedure have been extended to more com-
plicated cases such as the 3D acoustic (Fan et al., 2018b) and elastic
wave equations (Li et al., 2018).
FDFD is a computationally and memory intensive method

(Plessix, 2009), which prevents it from being widely used in FWI.
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The nonuniform-grid method, which usually uses variable grid
density to discretize models with large velocity contrasts, was de-
veloped to mitigate this disadvantage (Wang et al., 2019c). The non-
uniform-grid finite-difference (FD) modeling algorithms can be
classified into two groups. The first group uses continuous nonuni-
form grids that vary continuously along certain coordinates (Moczo,
1989; Falk et al., 1996; Opršal and Zahradník, 1999; Pitarka, 1999;
Oliveira, 2003; Chu and Stoffa, 2012). The computation is usually
very convenient once the FD operator can be applied to the rectan-
gular grid. The second group uses discontinuous nonuniform grids
that are flexible in terms of discretizing the model (Aoi and Fuji-
wara, 1999; Kristek et al., 2010; Zhang et al., 2013). This usually
can save more computational costs, but it requires special treatment
in the fine- to coarse-grid transition area (Jastram and Behle, 1992;
Jastram and Tessmer, 1994; Wang et al., 2001; Fan et al., 2015).
Similar nonuniform-grid techniques have been widely used in
FDTD modeling (e.g., Kang and Baag, 2004; Huang and Dong,
2009a, 2009b; Liu et al., 2014; Fan et al., 2015; Nie et al.,
2015; Wang et al., 2019c). For nonuniform-grid FDFD modeling,
Li and Jia (2018) develop continuous-grid FDFD modeling method
based on the ADM FDFD operator of Chen (2012). However, com-
pared to continuous-nonuniform-grid FDFD modeling, the discon-
tinuous-nonuniform-grid method can discretize the model more
flexibly and further reduce costs. The major issue is in the fine-
coarse grid transition zone, in which special FDFD operators need
be designed to maintain the global accuracy of the wave propaga-
tion. By using Fan et al.’s (2017) general FDFD optimal procedure,
Fan et al. (2018a) propose a discontinuous-grid FDFD method to
transfer the wavefield across the fine-to-coarse transition zone with-
out reducing accuracy. But the spacing ratio (N) was restricted to a
power of two, which limited its practical applications.
In the following study, we develop a new optimal method with a

flexible stencil for 2D scalar-wave FDFD and apply it to discontinu-
ous-grid modeling. Theoretically, with the new method, the coarse-
to-fine spacing ratio N can be expanded to any integer. In the rest

part of this paper, we first introduce the optimal theory for discon-
tinuous-grid FDFD schemes and we investigate their dispersion
relations and the structures of the impedance matrices. Then, we
validate the proposed method using numerical examples in discon-
tinuous grids and their results are compared with those using the
traditional uniform grid. Finally, a brief conclusion summarizes
the advantages of the proposed method.

METHODOLOGY

FDFD operator

The frequency-domain 2D scalar wave equation can be expressed
as (Jo et al., 1996)

∂2P
∂x2

þ ∂2P
∂z2

þ ω2

v2
P ¼ 0; (1)

where v is the model velocity, ω is the angular frequency, P is the
pressure, and x and z are the horizontal and vertical spatial coordi-
nates, respectively. To introduce a flexible FDFD stencil, we use
the grid geometry shown in Figure 1, in which Figure 1a is a general
stencil and Figure 1b and 1c are two sample stencils. The involved
grid points have to be paired and centrosymmetric. In other words,
every grid point is the same as another one located at 180° in rotation.
Therefore, we only need to determine half of these points. For the
general FDFD stencil in Figure 1a, the commonly used 9- or 25-point
scheme can be considered as its special case. Similarly, we can form
other stencils by choosing certain points from the general stencil or,
equivalently, setting weighting coefficients to points of the general
stencil (including using zero coefficients to eliminate unwanted
points) to form new stencils such as in Figure 1b and 1c. Therefore,
we can unify our analyses to specific stencils by investigating the gen-
eral stencil. We use the general FDFD stencil in Figure 1a to approxi-
mate the two second-order spatial derivatives ∂2P∕∂x2 and ∂2P∕∂z2
in equation 1. For the mass acceleration term ω2∕v2P, we follow the

previous approaches (Jo et al., 1996; Min et al.,
2000; Chen, 2012; Fan et al., 2017) and approxi-
mate it using the weighted sum of all grid points
involved in the stencil and obtain

1

Δx2
XNz

j¼0

XNx

i¼FðjÞ
ci;jðPmþi;nþjþPm−i;n−jÞ

þ 1

Δz2
XNz

j¼0

XNx

i¼FðjÞ
di;jðPmþi;nþjþPm−i;n−jÞ

þω2

v2
XNz

j¼0

XNx

i¼FðjÞ
bi;jðPmþi;nþjþPm−i;n−jÞ¼0;

(2)

where Pm;n ¼ PðmΔx; nΔzÞ and Δx and Δz are
the horizontal and vertical sampling intervals, re-
spectively. Subscripts i, j denote the spatial loca-
tions in Figure 1a, and

FðjÞ ¼
�
0; if j ¼ 0

−Nx; if j ≠ 0
: (3)

Figure 1. Schematic of the 2D FDFD schemes, in which (a) is the general stencil and (b
and c) are two sample stencils. The locations circled by the red line are included in the
summation.
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The summation includes half of all the grid points as circled by the red
line in Figure 1a. The terms bi;j, ci;j, and di;j are the weighting co-
efficients for the mass acceleration term and two spatial

derivatives, and they satisfy
PNz

j¼0

PNx
i¼FðjÞ bi;j ¼ 1∕2 with

bi;j ≥ 0,
PNz

j¼0

PNx
i¼FðjÞ ci;j ¼ 0, and

PNz
j¼0

PNx
i¼FðjÞ di;j ¼ 0, respec-

tively. When we setNx = 1, Nz = 1, it becomes the commonly used 9-

point scheme, and when Nx = 2, Nz = 2, it is the 25-point scheme.
Other 2D FDFD schemes can also be considered as its special cases.
Similar to Fan et al. (2017), we separate the analysis of Δx ≥ Δz

from Δx < Δz. Only the former will be investigated, and the latter
can be analyzed by exchanging the x- and z-directions. To simplify
equation 2, we define ai;j ¼ ci;j þ r2di;j, where r ¼ Δx∕Δz is the
aspect ratio. By substituting them into equation 2, we obtain

Figure 2. Comparison of three sample FDFD stencils. The three rows from top to bottom (a-c) are for different cases, in which the geometries
of the stencils, dispersion curves, structures of impedance matrices, and synthetic snapshots are presented. Dispersion curves of different colors
denote different propagation angles. The calculation of the impedance matrix is based on a small 8 × 8 grid model. The simulation is based on
the same 2D homogeneous medium with a velocity of 3500 m/s, and a 30 Hz Ricker wavelet is used as the source. The spatial interval is 4 m for
the schemes in (a and b), but it is 2 m for the scheme in (c) because of its lower accuracy.
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1

Δx2
XNz

j¼0

XNx

i¼FðjÞ
ai;jðPmþi;nþj þ Pm−i;n−jÞ

þ ω2

v2
XNz

j¼0

XNx

i¼FðjÞ
bi;jðPmþi;nþj þ Pm−i;n−jÞ ¼ 0; (4)

where ai;j satisfies
PNz

j¼0

PNx
i¼FðjÞ ai;j ¼ 0.

Then, the classic dispersion analysis is
implemented to obtain the optimization
coefficients (Chen, 2012; Fan et al., 2017). We
substitute a monochromatic plane wave
Pðx; z;ωÞ ¼ P0e−iðkxxþkzz−ωtÞ into equation 4,
where kx and kz are the horizontal and vertical
components of the wavenumber vector, respec-
tively, and we derive the normalized phase
velocity Vph∕ν as follows:

Vph

v
¼ G

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−

PNz
j¼0

PNx
i¼FðjÞ ai;jTi;jPNz

j¼0

PNx
i¼FðjÞ bi;jTi;j

vuut ; (5)

where G is the number of grid points per wave-
length, which is defined with respect to the
larger spatial interval, Ti;j ¼ cosðið2π sin θ∕GÞ
þjð2π cos θ∕rGÞÞ, and θ is the propagation an-
gle relative to the vertical axis. Then, we mini-
mize the following phase error function to
obtain optimized ai;j and bi;j:

Eðai;j; bi;jÞ ¼
ZZ �

1 −
Vph

v

�
2

d ~kdθ; (6)

where ~k ¼ 1∕G.
Coefficients ci;j and di;j are also required

when the absorbing boundary such as the widely

used perfectly matched layer (PML) is used. Following the ap-
proach by Fan et al. (2018a), these coefficients can be determined
by minimizing the error function:

Eðci;j; di;jÞ ¼
ZZ

ðE2
1 þ E2

2Þd ~kdθ; (7)

where

Table 1. Coefficients of the different FDFD operators in Figure 1.

Scheme Subscripts b c d

Stencil a 0,0 3.90288061835353E-01 −3.33338345354048E-01 −3.33327181288250E-01
1,1 6.01878513203072E-02 2.22228445936166E-01 2.22217275204259E-01

−2,1 2.47633081951113E-02 5.55549472878641E-02 5.55549530419119E-02

−1,2 2.47607786492284E-02 5.55549521300179E-02 5.55549530420788E-02

Stencil b 0,0 3.45603780725254E-01 −6.19552541467508E-01 1.74940515123029E-02

1,1 5.66108467399356E-02 6.05001067959521E-01 −2.35876546508933E-01
1,3 1.13444490733052E-02 −9.22425195227347E-02 1.11609940505222E-01

−1,2 5.09504376561069E-02 2.75695895762229E-02 5.33862772457136E-02

−2,1 3.54904858053984E-02 7.92244034544985E-02 5.33862772456945E-02

Stencil c 0,0 2.71472954306941E-01 7.13688920079976E-01 −8.78812863378444E-01
1,1 1.31797995677072E-01 −9.99646388257185E-01 8.19112363937886E-01

3,2 4.43710985266045E-02 1.84066317080072E-01 −1.20288191535349E-01
0,2 1.01269942034431E-02 6.81984874914736E-02 1.46294447331693E-01

−3,1 4.22309572859399E-02 3.36926636056638E-02 3.36942436442141E-02

Figure 3. Nine-point discontinuous-grid configurations for N = 3. Grid points A and B
are inside regular grids, whereas C, D, and E are located in the fine-to-coarse connecting
row where special stencils are used. Different FDFD operators are designed based on the
local distribution of the surrounding points. Points D′ and E′ are distorted stencils used
near the absorbing boundary.
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E1 ¼
XNz

j¼0

XNx

i¼FðjÞ
ci;jTi;j∕

XNz

j¼0

XNx

i¼FðjÞ
bi;jTi;j þ

�
2π sin θ

G

�
2

(8a)

and

E2 ¼
XNz

j¼0

XNx

i¼FðjÞ
di;jTi;j∕

XNz

j¼0

XNx

i¼FðjÞ
bi;jTi;j þ

�
2π cos θ

rG

�
2

:

(8b)

As examples, we use the above procedure to calculate optimal
coefficients for three FDFD operators as shown in Figure 2. The
optimized coefficients are listed in Table 1. The general features
of these operators are compared in Figure 2, including the
dispersion curves and structures of the impedance matrices. The
structures of the matrices are related to the FDFD stencils, and they
have larger bandwidths along the diagonals compared with the con-
ventional standard nine-point operator in Jo et al. (1996). To val-
idate the schemes, we further simulate the scalar wave propagation
in a 2D homogeneous media using these schemes. Their snapshots
are also shown in Figure 2. The dispersion curves of these three
stencils show different accuracies, in which stencils in Figure 2a
and 2b have similar accuracies because Figure 2b has only one more
pair of grid points than Figure 2a and these two additional grid
points stay far from the central grid point; thus, they do not affect
the accuracy too much. Stencil in Figure 2c has the lowest accuracy
because its grid points are more unevenly distributed and some of
them stay far away from the central grid point. From Figure 2, we
conclude that the accuracy of an FDFD operator is related to the
shape and number of points involved in a stencil. Similar tests
are conducted using other FDFD stencils, although their results
are not shown here. These numerical examples demonstrate that,
if more points are involved, or points are distributed more evenly,
or points are closer to the central point, the resulted FD stencil tends
to be more accurate.

Discontinuous-grid modeling

The subsurface velocity usually increases with the depth. To
adapt to velocity variations and reduce the computation cost, a var-
iable grid is often desirable. Fan et al. (2018a) propose a discon-
tinuous-grid FDFD method. However, it only works for the coarse-
to-fine grid spacing ratio N ¼ 2, or for N ¼ 2n by using the
procedure n times, where n is a positive integer. Here, we present

a general discontinuous-grid method that can be used for arbitrary
integer N. In general, N can be determined by the ratio of velocities
across the transition zone; e.g., we can use discontinuous grid with
N ¼ 2 if the velocity doubles. Considering the actual velocity con-
trast involved, discontinuous grids with N ¼ 2 − 5 are the most use-
ful. Because cases N ¼ 2 and N ¼ 4 have been covered by Fan et al.
(2018a), here we only discuss cases N ¼ 3 and N ¼ 5, although the
current procedure can be applied to an arbitrary integer N.
Because the standard nine-point operator is one of the most

widely used FDFD schemes, we take it as the example to demon-
strate the discontinuous-grid FDFD modeling. We first present the
methodology for the discontinuous-grid scheme with N ¼ 3 shown
in Figure 3. Assuming that the model has lower and higher veloc-
ities in the shallow and deep areas, and the higher speed is at least
three times of the lower speed, we grid the model by Δx and Δz in
the upper part and 3Δx and 3Δz in the lower part. The fine grid

Table 2. Coefficients of FD operator for the discontinuous-grid scheme with N = 3.

Scheme Subscripts b c d

Nine-point (D) 0,0 2.86957420011575E-01 2.35557169714165E+00 −2.74851982133288E+00
1,0 1.22436783030788E-01 −3.58366514844076E+00 3.70056947574663E+00

2,0 1.05931117713454E-03 1.21282254201398E+00 −1.04764309816071E+00
2,3 3.58729260389506E-02 −2.08171046934734E-02 5.77883662163354E-02

−1,3 5.36735597415521E-02 3.60880139786013E-02 3.78050775306212E-02

Figure 4. Normalized phase velocity curves for three types of
FDFD operators in Figure 3, with standard nine-point operators
at grid points (a) A and (b) B/C and (c) a new nine-point operator
at grid point D/E, respectively.
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should cover the entire low-velocity area and extend into the high-
velocity area for at least 3Δz to ensure the accuracy of the wavefield
crossing the transition zone. If other stencils are used, the size of the
overlapped zone may be different. For example, for the 25-point
stencil, the overlapped zone should be at least 6Δz. Figure 3 shows
several typical FDFD stencils involved in the fine-grid, coarse-grid,
and transition areas. In regular-grid areas including fine and coarse
grids, standard nine-point operators are used, as illustrated by grid
points A and B in Figure 3, and in the connecting row, FDFD op-
erators with special stencils are used to ensure wavefield continuity
across that row. The connecting row involves three kinds of grid
points. One is grid point C, in which the standard nine-point oper-
ator works. The other two are grid points D and E, in which new
nine-point operators are designed based on the distribution of sur-
rounding points. The FDFD stencils at D and E are mirrored about
the vertical line; therefore, we only need to cal-
culate the optimal coefficients for one of them.
When the FD stencil reaches the absorbing

boundary, the requirement of rotational sym-
metry around the central point may not be satis-
fied. Under this circumstance, we omit the grid
points outside the boundary and we use distorted
stencils such as D′ and E′ as shown in Figure 3.
For simplicity, their optimal coefficients are
still determined using the full stencils D and E.
Numerical tests verified that, because of the
existing absorbing condition, the wavefield is
very weak when bouncing back from the boun-
dary. Therefore, this simple boundary treatment
does not affect the result too much and a high-
accuracy wavefield can still be achieved.
The coefficients for FDFD schemes at D or E

can be obtained following the optimization pro-
cedure in the previous section. The range of ~k is
set within [0, 0.08] by the trade-off between the
minimum G and the phase velocity error. Table 2
lists the resulting optimal coefficients of the nine-

point operator at D/E. Figure 4 shows the normalized phase veloc-
ities (the dispersion curves) for all FDFD operators in Figure 3. Tak-
ing the commonly used 1% criterion for the minimum G, i.e.,
keeping the threshold of normalized phase velocity at 0.99, we find
that the maximum values of 1∕G for operators at grid points A, B/C,
and D/E are 0.29, 0.097, and 0.1, respectively. However, operators
B-E fall into regions where the speed is at least three times faster
(i.e., the wavelength is at least three times longer), the maximum
values of 1∕G are actually 0.29, 0.29, and 0.3. Therefore, for
the nine-point discontinuous-grid scheme with N ¼ 3, G should
be at least 3.44 to limit the phase velocity error within 1%.
Similarly, we consider the discontinuous-grid scheme with

N ¼ 5, where the high speed in the lower area is at least 5.0 × the
low speed in the upper area. Figure 5 shows several typical FDFD
stencils used in the fine grid, coarse grid, and transition areas. We

Figure 5. Nine-point discontinuous-grid configurations for N = 5.

Table 3. Coefficients of different FD operators for the discontinuous-grid scheme with N = 5.

Scheme Subscripts b c d

13-point (D) 0,0 3.30801172581863E-01 −1.46449404683130E+01 1.28177804580952E+01

1,0 5.40766669021975E-02 1.18098310034799E+01 −9.57083469674555E+00
2,0 1.47182388732782E-02 1.19412687302919E+01 −1.24281340417920E+01
3,0 6.21392605255826E-03 −1.25171268933577E+01 1.25192746669509E+01

4,0 3.18983515785329E-03 3.40504607255770E+00 −3.37204869162245E+00
4,5 1.86478272348038E-02 −9.68831894133851E-03 1.77110195059905E-02

−1,5 7.23523331974456E-02 1.56098742825231E-02 1.62512856079420E-02

11-point (E) 0,0 2.15067399330285E-02 1.47859279378520E+00 −1.03806199252442E+00
1,0 3.31646837344718E-01 −1.15992722777486E+00 4.81441476592049E-01

2,0 5.37620960493052E-02 −1.05831894116812E+00 1.12712286761476E+00

3,0 1.90702626412470E-03 7.34627480869129E-01 −6.05374242893415E-01
3,5 3.97511857780061E-02 −6.62997850202567E-03 2.25957127090468E-02

−2,5 5.14261146308175E-02 1.16558727906816E-02 1.22761785019782E-02
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use standard nine-point operators in the regular grid areas. In the
connecting row, there are five different FDFD operators (Figure 5).
The first one is the grid point located at the continuous vertical grid
line (indicated by C) where the standard 9-point operator can work.
The other two types are the grid points located at the discontinuous
vertical grid lines (indicated by D and G), where two symmetrical
13-point schemes are used. The last two are the grid points located
at the discontinuous vertical grid lines (indicated by E and F), where
two symmetrical 11-point schemes are used.
The coefficients for the FDFD operators at D/G and E/F can also

be calculated by optimizing the objective functions 6 and 7. The
range of ~k is set within [0, 0.05], and Table 3 lists the resulting co-
efficients. Figure 6 shows the normalized phase velocities for all
FDFD operators in Figure 5. Similarly, we find that the maximum
values of 1∕G within 1% phase velocity error for operators in Fig-
ure 6a–6d are 0.29, 0.058, 0.06, and 0.06, respectively. Because
operators B-G fall into the high-speed area, the maximum values
of 1∕G are actually 0.29, 0.29, 0.30, and 0.30, respectively. So
for the nine-point discontinuous-grid scheme with N = 5, the G
value should be larger than 3.44 to limit the phase velocity error
within 1%.
The FDFD forward modeling is calculated by solving the linear

system AU ¼ S, where A is the impedance matrix, U is the wave-
field, and S is the source. The size and sparsity of the impedance
matrix A primarily determine the computational efficiency (Štekl
and Pratt, 1998). As an example, we use a simple model to compare
the impedance matrices of the uniform and discontinuous grids with
N = 3 and N = 5. The model is partitioned in three ways: a uniform
grid composed of 31 × 21 grid points (Figure 7a), a N = 3 discon-
tinuous grid consisting of 31 × 6 grid points in the top layer and
11 × 5 grid points in the bottom layer (Figure 7c), and anotherN = 5
discontinuous grid consisting of 31 × 6 grid points in the top layer
and 7 × 3 grid points in the bottom layer (Figure 7e). The structures
of their impedance matrices are compared in Figure 7b, 7d, and 7f.
Compared to the uniform grid, the discontinuous grid reduces the
size of the impedance matrix to 37% for N = 3 and 32% for N = 5;
reduces the nonzero elements to 36% for N = 3 and 32% for N = 5,
respectively. For both discontinuous-grid schemes, the size and
sparsity of the impedance matrix are greatly reduced.
In general, with the methodology presented above, we can build a

discontinuous-grid FDFD scheme with an arbitrary N. What we
should do is design accurate FDFD stencils in the fine-to-coarse
connecting region according to the distribution of the surrounding
grid points, followed by using the above-mentioned method to op-
timize the expansion coefficients and examine their accuracy. The
resulting FDFD schemes can reduce the computation cost while
maintaining the required accuracy.

NUMERICAL EXAMPLES

In this section, we present three numerical experiments to test the
proposed discontinuous-grid FDFD scheme. We implement these
simulations using one complex and two simple models. Compari-
sons between different results, including snapshots and waveforms
obtained by our schemes and the traditional uniform-grid scheme,
are used to demonstrate the accuracy and efficiency of the proposed
scheme.
We first validate the discontinuous-grid FDFD scheme with N = 3

using a two-layer model. The model has a size of 1200 × 1200 m and
velocities of 1000 and 3000 m/s in the top and bottom layers, respec-

tively. The velocity interface is at z = 575 m. A 30 Hz Ricker wavelet
source is used in this and the following examples, and it is injected at
(600, 400) m (indicated by the red stars in Figure 8a and 8b). The
uniform-grid scheme and discontinuous-grid schemes are used in
the simulation. The former uses a small spatial interval of
Δx ¼ Δz ¼ 2.5 m to discretize the entire model and results in a grid
size of 481 × 481. The latter uses a small spatial interval of Δx ¼
Δz ¼ 2.5 m to discretize the upper area above z ¼ 600 m (indicated
by a dashed line in Figure 8b) to guarantee that the transition grids all
fall in the high-speed region. The remaining area is discretized by a
large spatial interval of 3Δx and 3Δz. The resulting fine- and coarse-
grid points are 481 × 241 and 161 × 80, respectively. A PML ab-
sorbing boundary is used in this and the following two examples
(Tang et al., 2015; Fan et al., 2017; Wang et al., 2019b). Two receiv-
ers are placed at (750, 400) and (600, 750) m, with one in the low-
speed region and the other in the high-speed region (indicated by the
reversed triangles in Figure 8a and 8b). The G value is 4.44 for the
uniform and discontinuous schemes if we assume that the shortest
wavelength is one third of the dominant wavelength of a Ricker
wavelet. Simulation results are shown in Figure 8, in which wavefield
snapshots (Figure 8a and 8b) are both at 0.4 s and synthetic seismo-
grams are compared at two receivers (Figure 8d and 8e). To demon-

Figure 6. Normalized phase velocity curves for different FDFD op-
erators in Figure 5, with standard 9-point operators at grid points
(a) A and (b) B/C, (c) a 13-point operator at grid point D/G,
and (d) an 11-point operator at grid point E/F, respectively.
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Figure 7. A velocity model discretized using (a) uniform grid, (c) N = 3 discontinuous grid, and (e) N = 5 discontinuous grid. The corre-
sponding impedance matrices are shown in (b, d, and f), respectively. The gray areas are nonzero elements, with their numbers denoted by nz.
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strate the accuracy of the synthetic wavefield, the differential snap-
shot is amplified by a factor of 10 and shown in Figure 8c, and differ-
ential seismograms are overlapped in Figure 8d and 8e. The slightly
polygonal-shaped waveform compared to the usual FDTD result is
because they have different time sampling intervals. In FDTD, it is
determined by the stability criterion, whereas in FDFD, it is deter-
mined by the sampling principle that requires two samples per period
for the highest frequency. The former is usually much smaller than
the latter, although they actually have the same accuracy.
To validate the case in which the source is located in the coarse-

grid zone, we conduct a similar calculation by moving the source to
(600, 675) m. The corresponding results are shown in Figure 9. The
results in Figures 8 and 9 demonstrate that uniform and discontinu-
ous grids generate comparable accuracy. Regarding computational
costs, it is mainly dependent on the structure of the complex-valued
impedance matrix due to implicitly solving the large sparse linear
equations. The computational times on a single CPU 4-core (Intel
Core i7-4790) desktop needed for uniform- and discontinuous-grid
modelings are 774 and 229 s, respectively, because the latter re-
duces the number of nonzero elements and the size of the matrix
to 56% for this specific numerical experiment.
We use the next two-layer model to validate the discontinuous-

grid FDFD method under N ¼ 5. The model has a size of
1500 × 1500 m. The velocities are 1000 and 5000 m/s in the
top and bottom layers, with an interface at z = 725 m. The source
is located at (750, 500) m. For the uniform-grid scheme, we use
a small spatial interval of Δx ¼ Δz ¼ 2.5 m to discretize the
entire model, and we obtain a grid size of 601 × 601. For the
discontinuous-grid scheme, we use a small spatial interval of
Δx ¼ Δz ¼ 2.5 m to discretize the area above z = 750 m (indicated
by the dashed line in Figure 10b) and a large spatial interval of 5Δx

Figure 8. Comparison between the uniform- and discontinuous-
grid schemes with N = 3. (a and b) Wavefield snapshots at 0.4 s
calculated using uniform and discontinuous grids. (c) The differen-
tial wavefield amplified by 10×. The dashed line in (b) denotes the
boundary between differently gridded areas. The source is denoted
by a red star. (d and e) Synthetic seismograms at two receivers
at (750, 400) and (600, 750) m (shown as reversed triangles in
[a and b]). The red and blue traces are from the uniform- and dis-
continuous-grid schemes, respectively, and the black traces are their
differences.

Figure 9. Similar to Figure 8 except the source is located in the
high-speed layer at (600, 675) m.

Figure 10. Comparison between the uniform- and discontinuous-
grid schemes with N = 5. Similar to those in Figure 8, except the
model velocity in the bottom layer is five times of that in the top
layer.
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Figure 11. Simulation results in a complex velocity model using uniform- and discontinuous-grid schemes. (a) The velocity model used in the
simulation. (b) The velocity versus depth at x = 0 and 1903 m. (c and d) Wavefield snapshots at t = 1 s from the uniform and discontinuous
schemes, where the dashed lines in (d) denote boundaries between differently gridded areas. (e) Differential wavefield (amplified by 10 ×)
between (c and d). (h-i) Synthetic seismograms calculated at locations (550, 100), (1268, 802), (954, 1038), and (634, 1120) m. The red and
blue traces are from the uniform- and discontinuous-grid schemes, and the black traces are the differential waveforms.
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and 5Δz to discretize the remaining area. The grid points of the finely
and coarsely gridded areas are 601 × 301 and 121 × 60, respectively.
Two receivers are placed at (1000, 500) and (750, 1000) m, with one
in the low-speed region and the other in the high-speed region (Fig-
ure 10b). Simulation results from these two different schemes are
compared in Figure 10. Figure 10a and 10b compares the wavefield
snapshots at 4.0 s, and shown in Figure 10c is their differential snap-
shot amplified by a factor of 10. Figure 10d and 10e compares the
synthetic seismograms from two receivers. Regarding the computa-
tional costs, the computational times on a single CPU 4-core (Intel
Core i7-4790) desktop needed for uniform- and discontinuous-grid
modeling are 787 and 429 s, respectively, because the latter reduces
the number of nonzero elements and the size of the impedance matrix
to 52%.
In the last example, to better test the proposed discontinuous-grid

method in a more realistic model having a large velocity contrast,
we convert part of the Marmousi2 model using vPðx; zÞ ¼
Cv2P0ðx; zÞ, where vP0 is the original velocity, vP is the converted
velocity, and C ¼ 0.25 s∕km is a constant. The resulting velocity
model with a size of 1903 × 1220 m is shown in Figure 11a. The
source and four receivers are located at (950,100), (550,100),
(1268,802), (954,1038), and (634,1120) m, respectively (Fig-
ure 11a). Figure 11b shows the velocity versus depth curves at
the distances x = 0 and x = 1903 m. The velocity generally increases
with the depth, but there is a high-velocity salt layer close to the
bottom of the model. To apply the discontinuous-grid method, we
separate the entire model into four layers and use a different grid
density to discretize the model. The depth ranges for these layers are
0–703, 703–1009, 1009–1081, and 1081–1220 m, with correspond-
ing minimum velocities of 682.4, 1572.8, 4497.2, and 1930.1 m/s
(Figure 11b), respectively. Based on their velocity variation ranges,
we grid these regions by Δx, 2Δx, 6Δx, and 2Δx, respectively,
where Δx ¼ 1 m. The spacing ratios at boundaries between the
lower and upper layers are N = 2 at z = 703 m, N = 3 at
z = 1009 m, and N = 1/3 (or N = 3 for the upper to lower layer
ratio) at z = 1081 m.
For comparison, we also generate a set of results using the con-

ventional uniform grid with Δx ¼ Δz ¼ 1 m. Figure 11c and 11d
shows the snapshots at 1.0 s using uniform- and discontinuous-grid
schemes. Figure 11e shows the differential snapshot that is ampli-
fied by a factor of 10. Figure 11f–11i compares the synthetic seis-
mograms from four receivers located in different layers, with their
differences overlapped to these waveforms. For this complex
model, the discontinuous-grid modeling reduces the impedance ma-
trix to 67%, and the computational time on a dual CPU 2 × 8-core
(Intel Xeon E5-2630) machine from 7625 to 4856 s is compared to
the corresponding uniform-grid modeling.
By comparing snapshots and synthetic seismograms in the above

three numerical examples, the results demonstrated that the discon-
tinuous-grid scheme generates highly consistent waveforms in sim-
ulating wave propagations while greatly reducing the computational
cost compared to the uniform-grid scheme.

CONCLUSION

We proposed an optimal method for discontinuous-grid FDFD op-
erators with flexible stencils. This method can be applied to the ar-
bitrary integer coarse-to-fine spacing ratio N, given that the involved
grid points are properly paired and centrosymmetric around the cen-
tral point. Considering that the spacing ratio N = 2–5 is the most

commonly encountered situation, the proposed method should be
very useful in building discontinuous-grid FDFD simulations in
high-contrast velocity structures for reducing the computational time
and memory cost while still maintaining accuracy. To demonstrate
the application of this method, we applied it to irregular FDFD sten-
cils in connection regions with spacing ratios of N = 3 and N = 5.
Many detailed procedures, e.g., designing irregular stencils, building
objective functions, optimizing expansion coefficients, and analyzing
dispersion curves and impedance matrices, were introduced. Numeri-
cal experiments in complex high-contrast velocity models were
calculated using the discontinuous-grid FDFD optimized with the
proposed method. The snapshots and waveforms calculated with
these schemes have accuracies comparable to those using dense con-
ventional uniform-grid schemes, whereas the computational costs
were greatly reduced.
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