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The P- and S-Wave Decomposition in a
Multicomponent Elastic Wavefield Based

on the Divergence and Curl Operators
and Their Applications in Elastic

Reverse Time Migration
Na Fan , Xiao-Bi Xie, Lian-Feng Zhao , Xiyan Zhou, and Zhen-Xing Yao

Abstract— The P- and S-wave separation is an important step
in the elastic reverse-time migration (ERTM). It not only removes
crosstalk artifacts in the image but also provides additional
constrains to subsurface structures by providing images between
different wave types. Traditional Helmholtz decomposition based
on divergence and curl operations can separate the P and S
wave modes but also modify the amplitude, phase and physical
dimension of the original coupled wavefields. To recover the
separated P- and S-waves to their original forms, we propose a
method, in which the corrections to the distorted separated wave-
fields, including their phase, amplitude and vector polarizations,
are organized into two spatial-time domain partial differential
equations. Solving these equations can generate the separated P
and S wavefields. The method can be conveniently applied in the
time-space domain and consistent with most time-domain finite-
difference (FD) based ERTM method. To verify the quality of the
decomposed P- and S-wave components, we apply them to the
ERTM using different elastic image conditions. For the PP image,
we use the scalar imaging condition by crosscorrelating the
corrected scalar Helmholtz potential wavefield from both source-
and receiver-sides. For the PS image, we use the magnitude-
and sign-based vector imaging condition by crosscorrelating the
magnitudes of the source-side vector P wave and the receiver-side
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vector S wave, whereas the sign is determined through their dot-
product results. Thus, accurate PP- and PS-reflectivity images
can be obtained. Several numerical examples are used to verify
our elastic wavefield separation method and the ERTM workflow.

Index Terms— Elastic reverse time migration (ERTM), elastic-
wave decomposition.

I. INTRODUCTION

MULTICOMPONENT imaging has long been an active
research topic for exploration geophysicists because

it can provide previously unavailable information and better
constraints on the physical properties of subsurface targets
compared to conventional single-component imaging. Decom-
posing the multicomponent elastic wavefield into P- and
S-wave components is an important basis for processing elastic
data and also a key step in elastic reverse time migration
(ERTM) [1], [2], [3], [4], [5]. It facilitates the removal of cross-
talk artifacts from the depth image, extracts additional infor-
mation through interactions of different wave types, e.g., PP,
PS, SS, and SP, and thus, provides better constraints to
the subsurface attributes [2], [6], [7]. There are mainly two
categories of elastic wavefield separation methods.

One method is the use of the divergence and curl operators
based on Helmholtz’s decomposition theorem [8]. By apply-
ing operators ∇· and ∇× to the originally coupled vector
wavefield, the P and S wave modes can be separated [6], [7],
[9], [10]. The amplitude, phase, dimension, and polarization
of these separated waves are, however, different from those
in the originally coupled wavefield, e.g., the vector particle
displacement or velocity [3], [11]. If repeatedly using the
gradient and curl operators, i.e., ∇(∇·) and ∇ × (∇×), to the
originally coupled vector wavefield, separated vector P and
S wavefields can be obtained, but the amplitude, phase, and
dimension still need to be corrected [7], [12], [13], [14].

The divergence, curl, and gradient operations can be
conducted in either spatial or wavenumber domains. For
wavenumber domain operation, by using the normalized
wavenumber, the above-mentioned amplitudes, phases, and
dimension changes can be easily corrected [9], [12]. The
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wavenumber domain operation, however, requires shuttling
between the space and wavenumber domains at each time iter-
ation; thus, for the commonly used time-space domain finite-
difference (FD), method the computational cost is extremely
high.

The wavefield separations can also be achieved in the
spatial domain, which is often more computationally efficient;
however, the related amplitude, phase, and dimension changes
are more difficult to recover [15]. Applying the ∇· and ∇×
operation each time will generate a π/2 phase shift and an
amplitude change, which is inversely proportional to the local
P or S velocity [16], [17]. To eliminate the phase change,
Sun et al. [16] proposed to compensate for the phase shift
using the Hilbert transform. Duan and Sava [7] introduced
time integration or equivalently using a 1/iω filter in the
Fourier domain to the source wavelet and receiver records
before wavefield extrapolation. To remove amplitude changes,
Sun et al. [17] proposed to multiply the separated S wave by
a balancing factor, which is the S-to-P velocity ratio. Duan
and Sava [7] used the local velocity to compensate for the
amplitude of the separated P and S waves.

For P and S wavefields separated directly performing oper-
ations ∇(∇·) and ∇ × (∇×) in the space domain, they
recover the vector property of the original wavefields, but their
amplitudes, phases, and dimensions are all incorrect [7], [13],
[18]. Zhu [18] achieved the amplitude- and phase-preserved
wavefield by further solving a vector Poisson’s equation with
respect to the extrapolated vector wavefield, followed by
decomposing the solved vector wavefields using ∇(∇·) and
∇ × (∇×); however, solving the Poisson’s equation is rather
costly, which limits its practical application in the ERTM.
Yang et al. [14] proposed using a 1/ω2 filter to modify the
phases of the source wavelet and multicomponent records,
as well as scale the amplitudes of extrapolated wavefields
with the squares of P- and S-wave velocities 1/α2 and 1/β2.
This is equivalent to solving a vector Poisson’s equation using
an efficient way. The operators ∇(∇·) and ∇ × (∇×) are
then applied to the amplitude- and phase-corrected vector
wavefields to produce vector P and S waves.

Another commonly used wavefield separation method is
solving the P- and S-wave decoupled elastic wave equations,
either the second-order displacement equation [19] or the
first-order velocity-stress elastic wave equation [20], [21],
[22], [23]. This wavefield decoupling method can separate
coupled wavefield into vector P and S waves while still
preserving their phase and amplitude information, thus being
widely used in the ERTM recently [23], [24], [25], [26],
[27], [28], [29]. This type of elastic wavefield separation
method, however, changes the form of the traditional coupled
elastic wave equation. So it is usually not easy to expand to
other complex media, such as with terrain, viscoelasticity or
anisotropy, etc., whereas the separation method based on diver-
gence and curl operators can be easily expanded to complex
situations because these operators are directly performed to the
originally coupled vector wavefield with no need to change the
form of traditional coupled elastic wave equations.

In order to produce scalar imaging results, usually scalar
or vector wavefields are extracted from the original elastic

wavefield to represent P and S waves, and it is also better
to preserve the amplitude and polarization information during
wavefield separation. For scalar wavefields, scalar imaging
conditions are usually used in ERTM. PP image can show true
reflectivity imaging as long as the scalar P wave has the correct
amplitude and phase information [26], [29]. But the PS image
has two problems. One is that a scalar S wave converted from
vector Helmholtz potential is difficult to obtain [3], [7], [11].
Another issue is that the P-to-S reflection exhibits a polarity
reversal at normal incidence in isotropic media [30]. It can lead
to problems when stacking PS images from multiple shots.
Therefore, the polarity should be corrected before stacking
[3], [7], [31], [32], [33], [34], [35]. Polarity correction is a
complicated and time-consuming process and usually needs
to introduce other parameters, such as the Poynting vector
and interface information. If these parameters are inaccurate,
it will affect the final imaging.

For vector wavefields, vector imaging conditions are widely
used in ERTM. The dot-product vector imaging conditions are
proposed by summing the dot product of the vector source
and receiver wavefields [18], [22], [24], [36]. The imaging
results are, however, undermined by the cosine or sine of the
incident and reflection angles, which cannot represent the true
reflectivity [26], [36]. Later, the magnitude- and sign-based
vector imaging conditions [26] or called modified dot-product
vector imaging conditions in Yang et al. [14]’s paper, are
proposed by crosscorrelating the amplitudes from the vector
source and receiver wavefield, whereas the sign was calculated
through their dot-product results. This imaging condition can
partially eliminate the effects produced by propagation angles.
PP image still has the problem of polarity reversal when the
opening angle is beyond 90◦ while the PS image is completely
fine [26].

In this study, we propose a wavefield separation method
based on the divergence and curl operations in the space
domain, with all amplitude and phase corrections also con-
ducted in the space domain. In addition to generating vector P
and S waves with correct amplitude and phase, the proposed
method also generated a special scalar P wave, which is the
projection of the vector P wave in the propagation direction.
It can be directly used in the ERTM to generate the PP image.
On the other hand, the vector P and S waves can be used to
generate the PS image.

II. THEORY

A. Wavefield Separation

In an isotropic medium, elastic wavefield can be separated
using the Helmholtz decomposition [8], [9], i.e., its compres-
sional component P and shear component S can be obtained
by applying the divergence and curl operators to the original
vector wavefield U

P = ∇ · U

S = ∇ × U (1)

where the vector wavefield U can either be displacement or
particle velocity, P is a scalar, and S is a vector perpendic-
ular to the S-wave polarization. In the wavenumber domain,
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(1) can be transformed to

P̂ = ik · Û = ik
(

I · Û
)

Ŝ = ik × Û = ik
(

I × Û
)

(2)

where the hat ∧ denotes the corresponding variables in the
wavenumber domain, k is the wavenumber vector, which
parallels the wave propagation direction and also the P-wave-
polarization direction, k = |k| = ω/v is its modulus, and v
is the phase velocity, ω is the angular frequency. I = k/k is
the unit vector along the propagation direction. The decom-
posed wavefields have their amplitudes, phases, and physical
dimensions changed compared to the original wavefield. The
factor ik introduces a π/2-phase shift and changes the P- and
S-wave amplitudes by a factor that is inversely proportional
to the P and S velocity, respectively [16], [17].

Next, let

P̂cor = I · Û

Ŝcor = I × Û (3)

where P̂cor and Ŝcor are the amplitude- and phase-corrected
P̂ and Ŝ. Substituting (3) into (2) and replacing k by kP and
kS for P and S wave, respectively, we have

P̂cor = P̂

ikP

Ŝcor = Ŝ
ikS

. (4)

Compared to the originally decomposed wavefields in (1),
the wavefields in (4) have correct amplitudes, phases, and
dimensions. Pcor is a scalar wave and can be regarded as the
vector P wave projected to its propagation direction. Pcor and
Scor should have the equal energies with U.

In addition, these waves have dispersion relations kP = ω/α
for P-wave and kS = ω/β for S-wave in an isotropic elastic
medium, where α and β are the P- and S-wave velocities,
respectively. Substituting them into (4), we obtain

P̂cor = α

iω
P̂

Ŝcor = β

iω
Ŝ. (5)

Transforming them back to the time-space domain, we have

∂ Pcor

∂ t
= αP = α∇ · U

∂Scor

∂ t
= βS = β∇ × U. (6)

Finally, (6) can be used for correcting the phase and
amplitude of the separated Helmholtz potential wavefields in
the time-space domain.

To recover the vector polarization information, the
wavenumber domain equation is [12]

ÛP = I
(

I · Û
)

ÛS = −I ×
(

I × Û
)

(7)

Fig. 1. Flowchart for P- and S-wave decomposition and ERTM.

where UP is the vector P wave and US is the vector S wave.
Substituting (3) into (7), we obtain

ÛP = I P̂cor

ÛS = −I × Ŝcor . (8)

Similar to the amplitude- and phase-correction process
described in (3) to (6), we have

∂UP

∂ t
= α∇ Pcor

∂US

∂ t
= −β ∇ × Scor . (9)

Finally, the correct vector P and S waves can be obtained
from the original elastic wavefield through two successive
steps, i.e., (6) and (9). The flowchart of wavefield separation is
illustrated in Fig. 1. Here, the vector polarization is obtained by
repeatedly using divergence and curl operations; the amplitude
corrections are done by multiplying local P and S wave
velocities. The two time derivatives are reversed by solving
two partial differential equations. The entire process can be
conveniently embedded in commonly used space-time FD
methods. The processes of solving (6) and (9) using the FD
scheme are presented in Appendixes B and C.

B. Elastic Reverse-Time Migration

We mainly focus on the PP and PS images. Considering
that a normalized cross-correlation image condition, including
the source-side illumination, can provide correct angle depen-
dence, scale factor, sign, and the required dimensionless units
[4], we adopt a normalized cross-correlation image condition.
There are three kinds of popular imaging conditions. The first
one is the scalar imaging condition [6], [7]

I P P (x) =
∫ Tmax

0 Pcor
src (x, t)Pcor

rec (x, t) dt∫ Tmax

0 Pcor
src (x, t)2 dt

I P S(x) =
∫ Tmax

0 Pcor
src (x, t)Scor

rec (x, t) dt∫ Tmax

0 Pcor
src (x, t)2 dt

. (10)
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The second one is the dot-product vector imaging condition
[18], [36]

I P P =
∫ Tmax

0 UP
src · UP

rec dt∫ Tmax

0

∣∣UP
src (x, t)

∣∣2
dt

I P S =
∫ Tmax

0 UP
src · US

rec dt∫ Tmax

0

∣∣UP
src (x, t)

∣∣2
dt

. (11)

The last one is the magnitude- and sign-based vector imaging
condition [14], [26]

I P P(x) =
∫ Tmax

0 sgnP P (x, t)
∣∣UP

src (x, t)
∣∣ ∣∣UP

rec (x, t)
∣∣ dt∫ Tmax

0

∣∣UP
src (x, t)

∣∣2
dt

I P S (x) =
∫ Tmax

0 sgnP S(x, t)
∣∣UP

src (x, t)
∣∣ ∣∣US

rec(x, t)
∣∣ dt∫ Tmax

0

∣∣UP
src (x, t)

∣∣2
dt

(12)

where I P P and I P S are PP and PS images, the subscripts
src and rec denote the source and receiver wavefields, the
operator “·” denotes the dot product between two vectors and
|·| denotes taking the amplitude of a vector. sgnP P and sgnP S

can be calculated by [14], [26]

sgnP P (x, t) =
{

+1UP
src (x, t) · UP

rec (x, t) > 0

−1UP
src(x, t) · UP

rec (x, t) < 0

sgnP S (x, t) =
{

+1UP
src (x, t) · US

rec (x, t) > 0

−1UP
src (x, t) · US

rec(x, t) < 0.
(13)

But PS scalar imaging condition in (10) has a polarity
reversal problem at normal incidence in 2-D media. The dot-
product imaging condition in (11) underestimates the true
reflectivity by the cosine or sine of the incident and reflection
angles. The last imaging condition for the PP image has the
polarity-reversal problem when the opening angle is beyond
90◦ while the PS image is completely fine. So we use a
combination of scalar and vector imaging conditions, where a
PP image is produced by the scalar imaging condition and a
PS image by the magnitude- and sign-based vector imaging
condition.

I P P(x) =
∫ Tmax

0 Pcor
src (x, t)Pcor

rec (x, t) dt∫ Tmax

0 Pcor
src (x, t)2 dt

I P S(x) =
∫ Tmax

0 sgnP S (x, t)
∣∣UP

src (x, t)
∣∣ ∣∣US

rec (x, t)
∣∣ dt∫ Tmax

0

∣∣UP
src (x, t)

∣∣2
dt

. (14)

The ERTM workflow can be summarized as below (Fig. 1):
1) Calculating the source wavefield Usrc by solving the

elastic-wave equation using, e.g., the FD code. Use the method
described in Appendixes B and C to solve (6) and obtain
source-side corrected scalar wavefield Pcor

src . Use the method
described in Appendixes to solve (6) and (9) to obtain vector
P wavefield UP

src.
2) Calculating the receiver wavefield Urec by solving the

adjoint elastic-wave equation. Similarly, using the methods
described in Appendixes B and C, solve (6) and (9) to obtain
receiver-side wavefields Pcor

rec , Scor
rec, and US

rec.
3) Apply the elastic imaging condition (14) to produce

PP- and PS-reflectivity images.

Fig. 2. Snapshots at 0.24 s in a homogenous model. (a) and (f) Are horizontal
and vertical components (Ux and Uz) of coupled vector wavefield. (b) and
(g) Are Helmholtz potential wavefields (P and S) separated by traditional
Helmholtz decomposition. (c) and (h) Are amplitude- and phase-corrected
wavefields Pcor and Scor from (6). (d), (e), (i), and (j) Are horizontal and
vertical components of vector P and S wavefields (U P

x , U P
z , U S

x , and U S
z )

calculated by (9).

Note that there are two types of FD calculations involved.
The first is for updating the main source and receiver side
wavefields Usrc and Urec. The second is embedded in every
time-iteration step to separate coupled elastic waves into
P and S waves.

We also compare the commonly used ERTM methods in
Appendix A and list the detailed wavefield separation methods
and the corresponding PP and PS imaging conditions.

III. EXAMPLES

A. 2-D Homogeneous Models

In this section, we present three numerical experiments
to validate the proposed elastic wavefield decomposition and
ERTM workflow in 2-D models.

In the first example, we validate the wavefield separa-
tion method using a homogeneous model with a size of
1600 × 1600 m2 and velocities of α = 3000 m/s and
β = 1500 m/s. A dipole source radiating both P and S
waves and having a 25-Hz Ricker wavelet is injected at
(800 m, 800 m). A receiver is placed at (534 m, 400 m).
A fourth-order regular-grid FD scheme is used to solve the
2-D second-order displacement elastic-wave equation and sim-
ulate the propagation of P-SV waves. The PML absorbing
boundary condition [37] is used for all boundaries. We show
the snapshots at 0.24 s in Fig. 2. Fig. 2(a) and (f) are
horizontal and vertical components (Ux and Uz) of the coupled
vector wavefield U. Fig. 2(b) and (g) are Helmholtz potential
wavefields (P and S) separated by Helmholtz decomposition
using the divergence and curl operators. Fig. 2(c) and (h) are
amplitude- and phase-corrected Helmholtz potential wave-
fields (Pcor and Scor ) calculated in (6). Note, in 2-D, the
Scor has only one component. Fig. 2(d), (e), (i), and (j) are
horizontal and vertical components of vector P and S wave-
fields (U P

x , U P
z , U S

x , and U S
z ) calculated by (9). We also

compare their waveforms and energies from a receiver located
at (534 m, 400 m). Figs. 3 and 4 compare waveforms of
coupled vector wavefield, uncorrected and corrected separated
Helmholtz potential wavefields, and decoupled vector P and S
wavefields. Black solid and dashed lines are Ux and Uz . Blue
solid and dashed lines are P and S. Red solid and dashed
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Fig. 3. Waveforms at a receiver location (534 , 400). (a)–(j) Are corre-
sponded to the snapshots in Fig. 2.

Fig. 4. Waveform comparisons at a receiver location (534, 400). (a) Compar-
isons among coupled vector wavefield, decomposed and corrected Helmholtz
potential wavefields. Black solid and dashed lines are Ux and Uz . Blue solid
and dashed lines are P and S. Red solid and dashed lines are Pcor and Scor .
(b) Modules of individual vector or scalar waveforms. Black solid line is for
coupled vector wavefield |U|. Blue solid and dashed lines are for |P| and
|S|. Red solid and dashed lines are for |Pcor | and |Scor |. (c) Comparisons
of waveforms between the coupled vector wavefield and decomposed vector
P- and S-wavefields. Green solid and dashed lines are for U P

x and U P
z . Yellow

solid and dashed lines are for U S
x and U S

z .

lines are Pcor and Scor . Green solid and dashed lines are
U P

x and U P
z . Yellow solid and dashed lines are U S

x and U S
z .

We draw the waveforms separately in Fig. 3 for clear display
and overlap them in Fig. 4(a) and (c) for comparison. In order
to check their energy, we calculate magnitudes of vector and
scalar waveforms and compare them in Fig. 4(b). Black solid
line is the modulus of coupled vector wavefield |U|. Blue solid
and dashed lines are |P| and |S|. Red solid and dashed lines
are |Pcor | and |Scor |. It show Pcor (x, t)2 = |UP (x, t)|2 and
Scor (x, t)2 = |US (x, t)|2.

From these three figures, we see that the separated
Helmholtz potential wavefields based on the divergence and
curl operations do not preserve correct amplitudes and phases
as in the originally coupled wavefields and lose their physical

Fig. 5. Two-layer velocity model. The model size is 5600 × 16002, with
its P- and S-wave velocities and densities are labeled in the figure.

Fig. 6. Snapshots at 0.7 s in the two-layer model. (a) and (e) Horizontal and
vertical components of the coupled vector wavefield. (b) and (f) Amplitude-
and phase-corrected Helmholtz potential wavefields decomposed using (6).
(c), (g), (d), and (h) Horizontal and vertical components of vector P and S
wavefields calculated using (9).

interpretation. After amplitude and phase correction, the right
amplitudes and phases are recovered and can be physically
understood as the original P and S waves projected on the
propagation direction and the direction perpendicular to the
propagation direction. Both the separated vector P and S waves
have the same amplitudes, phases, and vector polarizations as
in the originally coupled vector wavefield.

B. 2-D Layered Model

In the second example, we verify the wavefield separation
method and ERTM using a two-layer model (Fig. 5). The
model has a size of 5600 × 1600 m2 and velocities of
α = 2000 m/s, β = 1154 m/s, and ρ = 1.1 g/cm3 in the top
layer and α = 2500 m/s, β = 1443 m/s, and ρ = 1.3 g/cm3

in the bottom layer (Fig. 5). In order to compare the image
quality, we calculate the image from one shot. An explosion
source is placed at (2800 m, 40 m). A fourth-order staggered-
grid FD scheme is used to solve the 2-D first-order particle-
velocity elastic-wave equation. Fig. 6 illustrates the wavefield
snapshots at 0.7 s. Fig. 6(a) and (e) are horizontal and vertical
components (Vx and Vz) of coupled vector velocity wavefields.
Fig. 6(b) and (f) are amplitude- and phase-corrected Helmholtz
potential wavefields (Pcor and Scor ) separated using (6).
Fig. 6(c), (d), (g), and (h) are horizontal and vertical com-
ponents of vector P and S wavefields (V P

x , V P
z , V S

x , and V S
z )

calculated using (9).
Three types of imaging conditions are used to produce PP

and PS images, including scalar imaging conditions in (10)
[Fig. 7(a) and (b)], dot-product vector imaging conditions in
(11) [Fig. 7(c) and (d)] and magnitude- and sign-based vector
imaging conditions in (12) [Fig. 7(e) and (f)]. We calculate
the PP and PS amplitude versus angle curves in Fig. 8 for
three different imaging conditions by extracting the maximum
imaging amplitude from a small window of the first layer.
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Fig. 7. PP and PS images from a single shot in the two-layer model. (a) and
(b) PP and PS images using the scalar imaging conditions. (c) and (d) Images
using the dot-product vector imaging conditions. (e) and (f) Images using the
magnitude- and sign-based imaging condition.

Fig. 8. (a) PP and (b) PS reflection coefficients verse angle of the velocity
interface calculated by the scalar imaging condition (black lines), dot product
imaging condition (blue lines), magnitude- and sign-based imaging condition
(green lines) and the Zoeppritz equation (red lines).

We also calculate the true reflection coefficients by solving the
Zoeppritz equation, which is a reference curve in Fig. 8. It only
represents the correct amplitude of reflection coefficients but
no polarity information. In this example, just for one single
shot, interfaces with large offsets usually cannot be imaged to
the correct positions, which are curved upside on both sides in
Fig. 7. So the reflectivity amplitudes estimated from the large
incident angle are also inaccurate. In practice, we stack the
multishot images to eliminate the underestimated reflectivities
from the large incident angle.

For PP images, the results by vector dot-product imaging
condition are weakened, especially near the incident angle
of 45◦, and the polarity is reversed when the incident angle
is greater than 45◦ [Figs. 7(c) and 8(a)]. The image by a
magnitude- and sign-based imaging condition is not weakened
by the incident angle, but the polarity reversal still exists when
the incident angle is greater than 45◦ [Figs. 7(e) and 8(a)].
Only the scalar PP imaging condition gives the correct result
[Figs. 7(a) and 8(a)]. For PS images, the scalar imaging condi-
tion has polarity reversal separated from the normal incidence
[Fig. 7(b)]. The dot-product vector imaging condition has no
polarity-reversal problem but weakens the reflectivity, espe-
cially near the normal incidence [Figs. 7(d) and 8(b)]. Only the

Fig. 9. Marmousi2 velocity model. (a) P-wave velocity (km/s), (b) density
(g/cm3), (c) smoothed P-wave velocity, and (d) density.

Fig. 10. Wavefield snapshots comparisons between (a) our wavefield separa-
tion method and (b) the decoupled elastic-wave equation by Zhang et al. [21].
Six panels in (a) and (b) are the snapshots of horizontal and vertical
components of coupled vector particle-velocity wavefields (Vx and Vz) and
decoupled vector P and S wavefields (V P

x , V P
z , V S

x , and V S
z ) at the time

instant of 0.9 s.

PS image by a magnitude- and sign-based imaging condition
gives the correct image [Figs. 7(f) and 8(b)]. Therefore, we
propose to use a combination of scalar imaging conditions
for the PP image and magnitude- and sign-based vector
imaging conditions for the PS image, as described in (14)
[Fig. 7(a) and (f)].

C. 2-D Marmousi2 Velocity Model

In the last example, we test the wavefield decomposition and
ERTM in the Marmousi2 velocity model [Fig. 9(a) and (b)]
[38]. The S-wave velocity is derived from the P-wave velocity
according to β = α/(3)1/2. There are 99 explosive sources
with a 25-Hz Ricker wavelet located at the surface from a
distance of 40 to 3964 m with a shot spacing of 40 m. The
migration velocity model is smoothed from the true model,
as shown in Fig. 9(c) and (d). To verify the correctness of
our wavefield decomposition method in heterogenous media,
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Fig. 11. Waveforms comparisons at the same location between our wavefield
separation method (blue lines) and the decoupled elastic-wave equation
by Zhang et al. [21] (red lines). (a)–(f) Show the horizontal and vertical
components of coupled vector particle-velocity wavefields (Vx and Vz) and
decoupled vector P and S wavefields (V P

x , V P
z , V S

x , and V S
z ), respectively.

Fig. 12. PP and PS images in the Marmousi2 model. (a) and (b) PP and PS
images using the scalar imaging conditions. (c) and (d) Using the dot-product
vector imaging conditions. (e) and (f) Using the magnitude- and sign-based
imaging condition.

in Figs. 10 and 11, we compare the results with that from the
decoupled first-order velocity-stress elastic wave equation in
[21]. Fig. 11 shows the coupled and decoupled vector wave-
field snapshots at the same time instant, and Fig. 12 shows
the waveforms at the same receiver. We can see that the
waveforms from the two wavefield decomposition methods are
highly similar. Fig. 12 demonstrates the PP and PS images,
where Fig. 12(a) and (b) are PP and PS images using the
scalar wave imaging condition in (10), Fig. 12(c) and (d) are
using dot-product vector imaging conditions in (11), and

Fig. 13. Comparisons of traces in the (a) and (c) PP and (b) and (d) PS
images in the Marmousi2 model at a horizontal distance (a) and (b) 1.6 km
and (c) and (d) 2.4 km. The black lines are from images using scalar imaging
conditions. The blue lines are from images using dot-product vector imaging
conditions. The red lines are from images using magnitude- and sign-based
vector imaging conditions.

Fig. 12(e) and (f) are using magnitude- and sign-based vec-
tor imaging conditions in (12). Fig. 13 compares the PP
[Fig. 13(a) and (c)] and PS [Fig. 13(b) and (d)] reflectivities
at the distance of 1.6 km [Fig. 13(a) and (b)] and 2.4 km
[Fig. 13(c) and (d)]. PP images from all three imaging
conditions give good resolutions for complex structures in
the entire depth range. PP and PS images from the dot-
product vector imaging conditions are very close to those
from the magnitude- and sign-based vector imaging conditions
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but have slightly smaller amplitudes due to the effects of
the cosine or sine of the opening angle between the incident
and reflected waves; however, they are still different from the
images using scalar imaging conditions. PP images using these
two vector imaging conditions still have some amplitude and
phase differences comparing to the image from scalar imaging
conditions, especially in the shallow depth, because the super-
wide opening angles at large offset cause the problem of polar-
ity reversal. For PS images, some complex structures cannot
be correctly imaged using the PS scalar imaging condition
because of the uncorrected polarity-reversal problem of the S
wave. Therefore, PP from scalar imaging conditions and PS
from magnitude- and sign-based vector imaging conditions can
be used to represent the elastic true reflectivity images.

IV. CONCLUSION

The P- and S-wave decomposition based on divergence
and curl operations can separate the P and S wave modes
in isotropic elastic media but changes the amplitudes, phases,
and dimensions compared to those in the original wavefield.
We propose an amplitude- and phase-correction method, which
can be conveniently achieved in the time-space domain and
embedded in most of the time-domain FD propagators. The
corrections to the distorted decomposed P and S wavefields
are organized into two differential equations. By solving these
two equations, the separated P and S wavefields can recover
the correct amplitude, phase, and vector polarizations as in
the originally coupled wavefield. The detailed procedurals for
solving these decomposition equations are given in Appen-
dixes B and C. We then apply the separated P and S wavefields
in the ERTM workflow. For the PP image, we propose to
use the scalar imaging condition by crosscorrelating the scalar
Helmholtz potential wavefields generated during the decom-
position for both source and receiver wavefields. For the PS
image, we propose to use the magnitude- and sign-based vector
imaging condition, i.e., crosscorrelating the magnitudes of the
source-side P-wave and the receiver-side S-wave, whereas the
sign is calculated through their dot-product results. Finally,
we use three 2-D numerical examples to validate the elastic
wavefield separation and apply them in the ERTM for the PP-
and PS-reflectivity images, although the formulations are for
full 3-D.

The ERTM method is conducted in isotropic elastic media;
however, the idea can still be easily expanded to other com-
plex media, such as with terrain, viscoelasticity, anisotropy,
etc., because the wavefield separation expressions based on
divergence and curl operators are directly performed to the
originally coupled vector wavefield, and we do not need to
change the form of traditionally coupled elastic wave equation.

APPENDIX

A. Comparisons of Different ERTM Methods

We list the commonly used methods of wavefield sepa-
ration and the corresponding imaging conditions to produce
PP and PS images in Table I. For convenience in writing
the source-normalized zero-lag cross-correlation imaging con-
dition, we omit the source-normalized term. Methods 1–6

can be applied to displacement or particle-velocity wavefield.
Methods 7 and 8 are used in the velocity-stress equation.
Method 1 is used in the divergence and curl operators based on
Helmholtz’s decomposition theorem to separate the P and S
wavefield. Methods 2–4 are all using the ∇(∇·) and ∇ ×
(∇×) operators; however, by directly applying these operators
to the original wavefield, one can obtain the separated vector
wavefield with distorted amplitude and phase. So methods 3
and 4 are applyed to the modified original wavefield, and
then P and S wave with correct amplitude and phase can be
decomposed. Although methods 3, 4, and 6 can decompose the
P and S wave, the imaging conditions, especially for the PP
image cannot represent the true reflectivity. In method 7, the
auxiliary P-wave stress wavefield τ P is introduced to generate
a P-wave stress image to replace the PP image. But τ P is not
exactly equal to the scalar P-wave particle-velocity wavefield
and the P-wave stress image has a different physical meaning
from the PP image. In our method, if we define U to be
particle-velocity wavefield and then compare with method 7,
we have the following relation:

Pcor = 1√
ρ(λ + 2μ)

τ P . (A1)

We can see the P-wave stress wavefield divided by the elastic
impedance of the media can be converted to the scalar P-wave
particle-velocity wavefield. In method 8, Zhou et al. [26]
define the scalar P-wave particle velocity wavefield as v̄P and
give the different expressions in 2-D and 3-D media. Com-
pared with our method, we find Pcor = v̄P for either 2-D or
3-D case. But their scalar P-wave particle-velocity wavefield
are obtained based on the stress wavefield and only applied
for decoupled velocity-stress equation. Our method can be
applied to both displacement and velocity-stress equation.
Pcor can denote either the scalar P-wave particle-velocity or
displacement wavefield.

B. FD Schemes for P and S Wave Decomposition in
3-D Medium

We present two types of FD schemes for P and S wave
decomposition in 3-D medium. One is using regular-grid FD
scheme to solve the second-order displacement elastic-wave
equation, and the other is using the staggered-grid FD scheme
to solve the first-order particle-velocity elastic-wave equation.
We first expand (6) and (9) for calculating the corrected
Helmholtz potential wavefields and vector wavefields. Equa-
tion (6) can be expressed by

∂ Pcor

∂ t
= α

(
∂Ux

∂x
+ ∂Uy

∂y
+ ∂Uz

∂z

)
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂Scor
x

∂ t
= β

(
∂Uz

∂y
− ∂Uy

∂z

)
∂Scor

y

∂ t
= β

(
∂Ux

∂z
− ∂Uz

∂x

)
∂Scor

z

∂ t
= β

(
∂Uy

∂x
− ∂Ux

∂y

) (B1)
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TABLE I

COMPARISONS OF COMMONLY USED ERTM METHODS
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where Scor = ( Scor
x Scor

y Scor
y )T . Equation (9) can be

expressed by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂U P
x

∂ t
= α

∂ Pcor

∂x

∂U P
y

∂ t
= α

∂ Pcor

∂y

∂U P
z

∂ t
= α

∂ Pcor

∂z

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂U S
x

∂ t
= −β

(
∂Scor

z

∂y
− ∂Scor

y

∂z

)
∂U S

y

∂ t
= −β

(
∂Scor

x

∂z
− ∂Scor

z

∂x

)
∂U S

z

∂ t
= −β

(
∂Scor

y

∂x
− ∂Scor

x

∂y

)
.

(B2)

Based on the second-order displacement elastic-wave equa-
tion, we use the regular-grid FD operator with second-order
accuracy in time and (2m)th-order accuracy in space to approx-
imate the temporal and spatial derivatives. FD schemes for
(B1) are

Pcor
∣∣n+1
i, j,k = Pcor

∣∣n−1

i, j,k
− 2
tα

[
DxUx + DyUy + DzUz

]n

i, j,k

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Scor
x

∣∣n+1
i, j,k

= Scor
x

∣∣n−1
i, j,k

− 2
tβ
[
DyUz − DzUy

]n

i, j,k

Scor
y

∣∣n+1
i, j,k

= Scor
y

∣∣n−1
i, j,k

− 2
tβ
[
DzUx − DxUz

]n

i, j,k

Scor
z

∣∣n+1
i, j,k

= Scor
z

∣∣n−1
i, j,k

− 2
tβ
[
DxUy − DyUx

]n

i, j,k
.

(B3)

FD schemes for (B2) are⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

U P
x

∣∣n+1
i, j,k = U P

x

∣∣n−1
i, j,k + 2α
t

[
Dx Pcor

]n

i, j,k

U P
y

∣∣n+1
i, j,k

= U P
y

∣∣n−1
i, j,k

+ 2α
t
[
Dy Pcor

]n

i, j,k

U P
z

∣∣n+1
i, j,k

= U P
z

∣∣n−1
i, j,k

+ 2α
t
[
Dz Pcor

]n

i, j,k⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

U S
x

∣∣n+1
i, j,k

= U S
x

∣∣n−1
i, j,k

− 2β
t
[
Dy Scor

z − Dz Scor
y

]n

i, j,k

U S
y

∣∣n+1
i, j,k

= U S
y

∣∣n−1
i, j,k

− 2β
t
[
Dz Scor

x − Dx Scor
z

]n

i, j,k

U S
z

∣∣n+1
i, j,k

= U S
z

∣∣n−1
i, j,k

− 2β
t
[
Dx Scor

y − Dy Scor
x

]n

i, j,k

(B4)

where i, j, and k denote the grid points in the x-, y-, and
z-directions, respectively, n is the time index, and Dx , Dy,
and Dz denote the spatial FD operators along three directions,

t is the temporal interval.

Based on the staggered-grid FD scheme and the first-
order particle-velocity elastic-wave equation [39], [40], [41],
we replace the displacement U with particle-velocity V, and
the staggered-grid FD schemes for (B1) are as in (B5), shown
at the bottom of the page.

The staggered-grid FD schemes for (B2) are as in (B6),
shown at the bottom of the page, where the subscripts contain-
ing 1/2 denote the half gridpoint in the corresponding axis. For
spatial partial derivatives, an arbitrary even-order staggered-
grid FD scheme can be used to approximate the operator D.
Fig. 14 shows the locations of individual variables in the stag-
gered grid. Pcor is located at the same node with σxx , σyy, and
σzz . Scor

x , Scor
y , and Scor

z share the same nodes with σyz , σxz ,
and σxy , respectively. There is no location confliction when
conducting spatial FD operations, and therefore, no averaging
is required.

Pcor
∣∣n+1/2
i, j,k

= Pcor
∣∣n−1/2
i, j,k

− 
tα
[
Dx Vx + DyVy+DzVz

]n

i, j,k⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Scor
x |n+1/2

i, j+1/2,k+1/2 = Scor
x |n−1/2

i, j+1/2,k+1/2 − 
tβ
[
DyVz − Dz Vy

]n

i, j+1/2,k+1/2

Scor
y

∣∣n+1/2
i+1/2, j,k+1/2 = Scor

y

∣∣n−1/2
i+1/2, j,k+1/2 − 
tβ

[
DzVx − Dx Vz

]n

i+1/2, j,k+1/2

Scor
z

∣∣n+1/2
i+1/2, j+1/2,k

= Scor
z

∣∣n−1/2
i+1/2, j+1/2,k

− 
tβ
[
Dx Vy − Dy Vx

]n

i+1/2, j+1/2,k

(B5)
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V P
x
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x
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i+1/2, j,k

+ α
t
[
Dx Pcor
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y

∣∣n−1
i, j+1/2,k

+ α
t
[
Dy Pcor
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V P
z
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i, j,k+1/2 = V P
z

∣∣n−1
i, j,k+1/2 + α
t

[
Dz Pcor
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x
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V S
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y
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z
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Dx Scor
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(B6)
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Fig. 14. Grid layout of staggered-grid FD scheme for P- and S-wave
decomposition in 3-D medium.

C. FD Schemes for P and S Wave Decomposition in
2-D Medium

Here we present the regular- and staggered-grid FD schemes
for P and S wave decomposition in a 2-D medium. This can be
regarded as the special cases of the 3-D case in Appendix B.

Under this circumstance, Scor has only one component. For
simplicity, the FD operator with second-order accuracy in both
time and space is used. Equations (6) and (9) are expanded as
follows:

∂ Pcor

∂ t
= α

(
∂Ux

∂x
+ ∂Uz

∂z

)
(C1)

∂Scor

∂ t
= β

(
∂Ux

∂z
− ∂Uz

∂x

)
⎧⎪⎨
⎪⎩

∂U P
x

∂ t
= α

∂ Pcor

∂x
∂U P

z

∂ t
= α

∂ Pcor

∂z⎧⎪⎨
⎪⎩

∂U S
x

∂ t
= β

∂Scor

∂z
∂U S

z

∂ t
= −β

∂Scor

∂x
.

(C2)

Using the regular-grid FD scheme to solve the second-order
displacement elastic-wave equation, the following FD schemes
are used as in (C3) and (C4), shown at the bottom of the page,
where 
x is the grid interval.

If the staggered-grid FD scheme is used to solve the first-
order particle-velocity elastic-wave equation, the following FD
schemes are used as in (C5) and (C6), shown at the bottom
of the page.
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