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Abstract: The conventional elastic least-squares reverse time migration (LSRTM) generally inverts the
parameter perturbation of the model rather than the reflectivity of reflected P- and S-modes, which
leads to difficulty in directly interpreting the physical properties of the subsurface media. However,
an accurate velocity model that is needed by the separation of seismic records of conventional
LSRTM is usually unavailable in real data, which limits its application. In this study, we introduce a
new practical correlative LSRTM (CLSRTM) scheme based on wave mode decomposition without
amplitude and phase distortion, which frees from separation of seismic records. In this study, we
deduced the migration and the de-migration operators using the decoupled P- and S-wave equations
in heterogeneous media, which needs no extra wavefield decomposition in simulated data. To
accelerate the convergence and improve the efficiency of the inversion, we adopted an analytical
step-length formula that can be incidentally computed during the necessary de-migration process
and the L-BFGS algorithm. Two numerical examples demonstrate that the proposed method can
compensate the energy of deep structures, and generate clear images with balanced amplitudes and
enhanced resolution even for the fault structures beneath the salt dome.

Keywords: reverse time migration; least-squares migration; wave mode decomposition; reflectivity;
wave mode decomposition; heterogeneous

1. Introduction

Seismic migration plays an important role in constructing accurate images of the
subsurface structure and lithology from seismic data. Compared to ray-tracing based
migration and one-way wave equation migration (Claerbout [1]; Claerbout and Doherty [2];
Gazdag [3]; Stoffa et al. [4]; Huang and Fehler [5]), reverse time migration (RTM)
(Baysal et al. [6]; McMechan [7]) utilizes a two-way wave equation to propagate the wave-
fields, which does not suffer from dip limitation and has a higher resolution in complex
structures. However, the conventional elastic RTM (ERTM) cannot obtain accurate images
due to the assumption of acquisition geometry with regular sampling, infinite acquisition
aperture, unbalanced illumination, and unaliased seismic data, which cannot be satisfied
in practice (Etgen et al. [8]; Wong et al. [9]). In addition, RTM suffers from low-frequency
artifacts generated by cross-correlation between the forward and adjoint wavefields on the
wavepath, and the quality of the images depends, for the most part, on the precision of the
migration velocity model.

To mitigate the influence of the geometry acquisition problems above, a linear in-
version imaging method known as least-squares migration (LSM) (Lambare et al. [10];
Nemeth et al. [11]) has been proposed to improve images. LSM was first applied to Kirch-
hoff migration (Nemeth et al. [11]; Duquet et al. [12]) and later to one-way wave equation
migration (Gazdag [3]), and recently was introduced into RTM (Tang [13]; Dai et al. [14,15];
Wong et al. [9]). For LSM, it aims to find a subsurface reflectivity image that minimizes
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the L-2 norm of the residuals of observed data and simulated data (generated by Born
modeling). In a sense, the key idea of LSM is the amplitude matching strategy.

In general, LSM, especially least-squares RTM (LSRTM), can balance amplitude, miti-
gate crosstalk of P- and S-modes, and improve the resolution of images. In recent years,
many researchers have made great achievements in LSRTM. In 2014, Tan and Huang [16]
developed an LSRTM method based on the wavefield-separation imaging condition. In
2015, Wong et al. [9] developed a joint LSRTM scheme to exploit both primaries and free-
surface multiples to balance the subsurface illumination. Zhang et al. [17] proposed a new
framework for acoustic correlative LSRTM (CLSRTM), which stressed phase information to
match the observed data. In 2016, Liu et al. [18] further derived an analytical step-length
(ASL) formula for the acoustic CLSRTM. To solve the problem of cycle skipping caused
by the large velocity error, Liu and Li [19] developed an LSRTM scheme with an extended
imaging condition. In 2014, Dutta and Schuster [20], and Li et al. [21] developed a viscoa-
coustic LSRTM method to enhance image resolution. In 2015, Sun et al. [22] adopted a
constant Q model-based viscoacoustic LSRTM to compensate for attenuation. It is notable
that all of the above methods are merely applied to the acoustic case.

The solid Earth is elastic, even viscoelastic and anisotropic, therefore the conventional
acoustic approximation-based RTM cannot be directly extended to multicomponent elastic
media. Compared with the RTM in acoustic media, multicomponent imaging can provide
more attribute information in lithology and geology interpretation, such as sweet-spot de-
tection, fracture prediction, and oil and gas reservoir detection. In addition, the multicompo-
nent can improve the resolution of images due to S-wave being insensitive to the underlying
formation and having superiority in imaging steep dip structures. When using an acoustic
imaging condition to migrate elastic data, false images may occur. ERTM overcomes this
problem and provides reflectivity images of multicomponent data [23-26]. By comparing
PP and PS reflectivity images, one can identify lithology, fractures, fluid/gas, and hydro-
carbon reservoirs as the S-wave is more sensitive to fluid/gas phases. Furthermore, the
multicomponent images can provide investigation of reservoir attributes, especially in the
PS image. However, ERTM suffers from S-wave polarity reversal. For this reason, Dellinger
and Etgen [27] developed a Helmholtz decomposition-based ERTM method that uses the
divergence and curl operators to separate P- and S-waves. However, this method leads
to phase shift and amplitude distortion in S-wave (Sun and McMechan [28]). In this case,
some special corrections are needed to obtain an amplitude-preserving image (Sun and
McMechan [28]; Sun et al. [29]). Unlike the Helmholtz decomposition, the separated wave
equation can decouple the P- and S-waves during propagation, without changing the infor-
mation of the amplitude and phase in homogeneous media (Ma and Zhu [30]). However,
the assumption of homogeneous Lamé parameters is not available in heterogeneous media.
In addition, low signal-to-noise (SNR) in seismic records and unbalanced amplitudes lead
to a reduction in the SNR of the PS image.

In order to improve the imaging quality based on wave mode separation-based ERTM,
elastic LSRTM (ELSRTM) has been proposed to address these issues and can provide high
quality images. In 2017, Duan et al. [31] inverted the scalar images of squared P- and
S-velocity perturbations based on a new perturbation imaging condition for ELSRTM. Feng
and Schuster [32] inverted the reflectivities of P- and S-wave impedance rather than the
their velocities or the Lamé parameters as the reflectivities of P- and S-wave impedance are
more dissimilar than the Lamé parameters in scattering radiation patterns. In 2018, Rocha
et al. [33] derived linearized Born modeling and migration operators based on the energy
norm for acoustic and elastic wavefields. Chen et al. [34] inverted P- and S-wave impedance
perturbations with pseudo-Hessian preconditioning in ELSRTM. In 2019, Yang et al. [35]
utilized an LSRTM scheme based on the subsurface offset domain extended imaging
condition to obtain a better resolution when large velocity errors exist. In 2021, Zhong
et al. [36] developed a new scheme based on the elastic velocity —stress equation in isotropic
media, and inverted reflectivities of P- and S-wave velocity. The above methods chose to
invert either velocities, impedances, or Lamé parameters of P- and S-waves, but do not
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involve density in the inversion process. In 2016, Yang et al. [37] emphasized the importance
of involving density variations in LSRTM. In 2017, Qu et al. [38] proposed an ELSRTM
method considering the density variations by solving separated velocity —stress elastic
wave equations to mitigate the crosstalk due to wave modes coupling, and derived the
linearized demigration operator and gradient with respect to P- and S-wave velocities and
densities. Chen and Sacchi [39] inverted density, and P- and S-wave velocity perturbation
images using the conjugate gradient (CG) method to solve the LSM problem.

Although these ELSRTM methods can obtain high quality images, they invert the
model parameter perturbations of the velocity or impedance rather than the reflectivities
of P- and S-modes, which cannot generate images with adequate physical meanings,
and leads to difficulty in interpreting the subsurface structures. Therefore, based on the
separated wave equation, we construct a new framework for elastic CLSRTM (hereafter
termed ECLSRTM) to invert the reflectivity of the images, i.e., PP, PS, SP, and SS images.
In this paper, we derive the migration operator based on the separated wave equation in
heterogeneous media and the de-migration operator without extra wavefield separation of
the simulated and observed data. Based on the works of Xiao and Leaney (2010), we only
calculated the full wavefield and the S-mode displacement wavefield, then the P-mode
component could be obtained by subtracting the latter from the former, thus reducing the
cost of computation.

In this paper, we begin with a review of the elastic correlative objective function. Next,
we derive the migration and de-migration operators based on the separated wave equation.
After that, we present an ASL formula and L-BFGS method to accelerate the convergence
rate and improve the efficiency of the inversion. Last, two synthetic examples are presented
to demonstrate the effectiveness of the proposed ECLSRTM.

2. Methods
2.1. Correlative Elastic LSRTM

In the CLSRTM, Zhang et al. (2015) proposed a practical and robust cross-correlation-
based objective function in acoustic media. We applied it to elastic cases, written as follows,

- J d(x, tlxs)-D(xy, txs) dt
\/f d(xy, t|xs )-d(xp, t]xs) dt\/f D(x,, t|xs )-D(x,, t]xs ) dt

E(r(x)) dx,dxs, (1)

where r(x) is the reflectivity at the position x, and D(x;, t|xs) = (ux, u)" and d(x,, t|xs ) =
(uy, uZ)T are the observed data and simulated or predicted data, respectively. The objective
function of the optimal image can be obtained by minimizing the observed and simulated
seismic data to reach its minimum —1 (Zhang et al. [17]). The least-squares (L2) method is
an amplitude matching strategy, which is not available in field seismic data due to geometric
diffusion and angle effects. Compared to L2, the normalized zero-lag cross-correlation
objective function relaxes on the amplitude constraints (is insensitive to differences in
amplitude) and utilizes the phase information to measure the similarity of the simulated
and observed seismic data.

As for inversion, the problem may be very large, so the efficiency of the optimization
algorithm is of great importance. Thus, to solve the optimization problem, gradient-
based optimization algorithms are adopted. Usually, the optimization problem needs to
be solved efficiently with a tolerable level for both calculation accuracy and the costs of
the storage and computations (Wu et al. [40]). In this paper, the nonlinear CG method
and the limited memory Broyden—Fletcher—Goldfarb—Shannom (L-BFGS) (Broyden [41];
Fletcher [42]; Goldfrab [43]; Shanno [44]) method are adopted to solve the least-squares
optimization problem.

The descent direction of the nonlinear CG method can be written,

dp = —gi + Brdr—1, )
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where dj is the descent direction at k-th iteration, g, is the gradient corresponding to
the objective function, and By is a scalar parameter to generate conjugate direction. The
scalar parameter S has many variants, Hessian-free CG versions usually including the
HS (Hestenes and Stiefel [45]), PRP (Polyak [46]), and CD (Liu and Storey [47]), which are
listed as follows,

T
8i Yk
Bi® = , (3a)
dszlyk
T
L (3b)
g1l
Hngz
Bl = — ok, (3c)
dlzflgk—l

where y, = g, — g,_;, and superscript T means the transpose operator. To guarantee a
steady descent of the objective function, the scalar parameter § must be greater than zero.
However, the scalar parameter calculated by Equation (3a—c) may be less than zero in some
special cases, which leads to the opposition of two adjacent search directions. We adopt the
following modified scalar parameter,

P = max{0, B}, @)

when B < 0, the CG method will naturally degrade into the steepest descent (SD) method,
thus avoiding the opposition of two adjacent search directions.

In contrast, the Newton method has the characteristic of second-order convergence
compared to the SD and CG methods, thus having a fast rate of local convergence. However,
the computation of the Hessian matrix (second derivatives of objective function) can
be extremely expensive. In addition, when the Hessian matrix is nonpositive and ill-
conditioned, then additional modification and extra steps are needed. Quasi-Newton
methods approximately construct the Hessian inverse matrix without the computation
of the full Hessian matrix and its inversion. Here, we focus on the L-BFGS method
(Nocedal [48]), which can be expressed as follows,

di = —Bygy, ©)

where By, is the approximation of the inverse Hessian matrix. The conventional BFGS
method calculates the entire elements of By, which leads to an expensive cost for memory
usage. The L-BFGS method calculates the inverse Hessian matrix by only utilizing limited
vector sets of y and s, without storing the entire Hessian matrix and computing its inversion,
where s, = 1, — 1;,_1 is the image perturbation. By can be constructed using the vector sets
from the last m iterations, where m is an arbitrary number defined by the user. In this paper,
we applied the two-loop recursion scheme of the L-BFGS algorithm to compute the descent
direction. The initial inverse Hessian matrix is expressed as (Nocedal [48]),

B) = yisc/yi v )

when the approximation of the inverse Hessian matrix is nonpositive or ill-conditioned,
the L-BFGS method fails to construct a sufficient descent direction, thus we restart it using
the SD method.

2.2. Decoupled Elastic Wave Equation

ERTM uses elastic full wave equation to calculate the wavefield. In the propagation
of wavefield, the P- and S-waves are coupled, which would lead to crosstalk artifacts
in imaging and interpretation. Thus, wavefield decomposition is vital in multicompo-
nent imaging. The conventional Helmholtz decomposition-based ERTM (Dellinger and
Etgen [27]; Sun and McMechan [28]) separates the compressional P and transverse S com-
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ponents of the wavefield using the divergence and curl of the displacement vector field.
However, it distorts the amplitude and phase of the wavefield and generates polarity
reversal in an S-wave.

Ma and Zhu [30] proposed a 2D displacement—velocity wave equation based on a
separated wave equation to generate vector displacements of P- and S-wave wavefield,
without distorting the phase and amplitude. However, the separated elastic wavefields
do not convert between the P- and S-waves, and these two wave types decouple when the
density and shear modulus are homogeneous (Du et al. [49]).

In this case, Xiao and Leaney [50] proposed the vector displacement equations in
heterogeneous media,

pu=V[(A+2u)V-u] =V x (uV x u), )

where p is the density, A and y are the Lamé parameters, u = (11y, 1) is the particle displace-
ment, and the double dots above u denote the second-order time derivate. V = (V,, V;),
V-, and V x are the gradient, the divergence, and the curl operators, respectively.

In the work of Xiao and Leaney (2010), they calculated vector displacement equations
of the full wavefield, and the P- and S-mode displacement wavefields. To reduce the cost of
computation, we only calculated the full wavefield u and the S-mode wavefield uS. The
calculation of the P-mode wavefield is written in Equation (9),

pi° = —V x (uV x u), ®)

u’ =u—1ds 9)

The relationship between the Lamé parameters, P-wave velocity Vp, and S-wave

velocity Vs are written as,
{ A:P(ZI%_ZVSZ) . (10)
p=pVs

2.3. Reverse Time Migration
ERTM is recognized as an advanced migration tool and is considered to be of high

accuracy when imaging the subsurface structures and reflectivities. In heterogeneous
media, the 2D multicomponent RTM operator can be written as follows,

{ pus(x, txs ) = V[(A +2u)Veus(x, txs )] — V X [uV x us(x, t|xs )]

S(x, txs) = 6(x — x5) f (1) , (11)

where us = (uy, u;) is the forward-propagated wavefield with the shot at position x;,
S(x, t|xs ) is the source function, ¢ is the Dirac-delta function, and f (f) is the source signature.
The adjoint state wavefield is written (Zhang and Duan [51]),

{ our(x, t)xs ) = V(A +2u)Veur(x, tlxs )] — V x [uV X up(x, txs)] (12)

S(xr txs) = — S Ad(xy, txs )0 (x — x7) ’

where u, = (uy, u;) is the backward-propagated receiver wavefield (adjoint wavefield).
The adjoint source Ad(xy, t|xs ) = (Ady, Ad;) is expressed as,

1 J d-Ddt
Ad (%, tlxs) = < d—D), (13)
) /I DDt /[ dda\ [ dddt
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2.4. Scalar Imaging Condition for Vector Wavefields

To mitigate crosstalk artifacts generated by P- and S-wave coupling, we adopted the
separated wave equation and applied a scalar imaging condition for vector wave modes,

If uf(x, t|xs )'uf(x, f|x5 )dtdx

rre() = JI us(x, txs ) -ug(x, s )dtdx” (14a)
I uf (x, s ) -ud (x, txs )dtdx

res() = I us(x, t]xs )-us (x, txs )dtdx” (14b)
SIS (x, s ) ul (x, #xg )dtdx

rgp(x) = [ us(x, t|xs )-us(x, t|xs )dtdx’ (14c¢)
x, txs )-ud (x, t]x X

o) = Ut ) (o s )t .

I us(x, txs ) us(x, t|xs )dtdx”

where us = (uy, ;) are the horizontal and vertical components of the source wavefield,
uf = (upx, up;) and uS = (usx, tp;) are the P- and S-wave modes of the source wavefield,
and ul = (upx, p:) and ul’ = (1py, 1p:) are those of the receiver wavefield, respectively.
The symbol - denotes the inner-product operator, and rpp, rps, rsp, and rsg are the PP, PS,
SP, and SS stacked images, respectively.

In the ECLSRTM scheme, we used Equations (8)—(12) to update the stacked image
(Equation (14a—d)). In practice, the SP and SS images have a low resolution for explosive
sources, and for this reason, we chose to update PP and PS images in the migration
and de-migration processes. In the process of updating the images, we used the initial
reflecitivity ro(x) calculated by RTM as the input to compute the initial simulated data
in the first iteration. Thus, a de-migration operator must be involved accordingly in
ECLSRTM. Inspired by the framework of acoustic reverse time de-migration (RTDM)
operator derivation (Zhang et al. [17]; Liu et al. [18]), we derived the elastic RTDM operator
to generate the multicomponent seismic data.

2.5. Reverse Time Demigration

Zhang and Duan [51] presented the RTDM operator in the acoustic media. In the
process of demigration, the Born approximation was used to generate the simulated data
based on the reflectivity r(x). We extended it to the elastic case to predict the simulated
seismic data. Firstly, the background wavefield was calculated using the elastic wave of
Equation (12). Secondly, we used the reflectivity image r(x) and source wavefield us(x, t|x; )
as the input to generate the simulated data d, for which the Born approximation is governed
by Equation (15). Zhang et al. [17] proved that the demigration operator is the transpose of
the migration operator, i.e., forming an adjoint operator pair,

our(x, txs ) = V(A 4+ 2u)Vour(x, txs )] — V x [V X up(x, txs )]
S(x, s ) = r(x) Lelxdlxs) , (15)
d(xy, txs) = u,(xr,t|xs)

where,
r(x) = rpp(x) + rps(x) + rsp(x) + rsg(x). (16)

Compared to the works of Zhong et al. [36], the proposed demigration operator does
not need to separate the observed data, thus it is expected to be applicable to real data,
because separating seismic records depend on an accurate velocity. However, an accurate
velocity model is usually unavailable in real data. In addition, freeing from separating
seismic data decreases the calculation cost and improves the computation efficiency.

In this study, we solved Equations (7), (8), and (15) using a staggered-grid finite
difference method.
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2.6. Analytical Step Length Formula

To accelerate the convergence, a sufficient descent direction and step length are needed.
For local gradient-based optimization problems, an efficient and cost-effective step-length
formula is extremely important in this context. Generally, the parabolic search method
(PSM; Liu et al. [52]), and the ASL (Liu et al. [18]) formulas are commonly applied. The
PSM, a linear search method, involves at least twice as much forward modeling to calculate
the optimal step length. Compared with PSM, ASL based on the Taylor expansion of the
objective function only calculates the first and second order derivates of a to obtain the
optimal step length. Although ASL needs to store the perturbed records of each shot, it
involves only one time reading of all seismic records, and can be incidentally calculated
during the data prediction process, i.e., during the demigration process, which significantly
improves the efficiency of inversion (Liu et al. [18]).

Here, the ASL formula for acoustic CLSRTM based on the linear characteristic of the
RTDM operator (Liu et al. [53]) can also be applied to elastic case,

b
Ropt = — 5 (17)
where,
a= lﬂ" 1 {zf d~8ddtf 5d.D dt
20 /T DDt/ adat |~ [ ddadt s
J &d-8ddt [ d-&d dt 2

+hraa [ dDdt - 3( | d-D dt) }dxrdxs,

and,

[ d-Ddt [ d-sddt

_ 1
b=J] /I DDt /[ d.ddt< J d-dat

In the work of Liu et al. [52], numerical tests proved that the value of the objective
function using ASL has a faster convergence rate than PSM. In addition, even for noisy
data, the ASL method is more robust, efficient, and accurate in a complex model compared
to the PSM. Therefore, we adopted the ASL formula in this paper.

- / 8d-Ddt>dx,dxs. (19)

2.7. ECLSRTM Scheme

We assumed that the observed data D, the migration velocity of density, and the
P- and S-waves are available. The inversion scheme of the proposed ECLSRTM can be
summarized as follows,

(1) Compute initial image rppy(x) and rpsp(x) with the observed data D using RTM,

(2) RTDM to compute the initial simulated data dg with ry and misfit fy,

(3) RTM to compute the two-component gradients gpp and gpg,

(4) Update the descent direction dy, = —Byg;,

(5) RTDM to compute the perturbed data 6d and the analytical step «,

(6) Update the inverted multicomponent images using rﬁ‘] = ri«(jfl + 5ri-‘]-, wherei,j = {P,S}
and k =1, 2,--- denotes iteration numbers. Simultaneously, update the simulated
data using dy = dy_1 + add and compute misfit fy,

(7) If the misfit is larger than the threshold set by the user, then repeat steps 3 to 6;
otherwise, stop this process and output the finial multicomponent images.

3. Numerical Examples

To verify the effectiveness of the proposed ECLSRTM using L-BFGS against the CG
method, we present two synthetic examples. The first model is a heterogeneous layered
model consist of a sag, while the second model is a complex SEG/SALT model consisting of
a salt dome and faults above and beneath the salt dome. In the following two experiments,
we give the following stopping criterion. The minimum relative change of the misfit
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Depth (km)

criterion value is set to 0.001 for the layered model, and 0.002 for the SEG/SALT model.
The inversion process will exit if the objective function value increases or the relative
change of the objective function is less than the misfit criterion set by the user. In numerical
experiments, finite difference operator with twelfth-order in space and second-order in time
is adopted to improve the precision of forward modeling and the OpenMP multithreads
parallel is used to accelerate the calculation for both examples.

3.1. Layered Model

In the first example, a layered model is shown in Figure 1. The layered model consists
of 361 x 241 grid cells in the horizontal and vertical directions with a spatial interval of
0.01 km in both directions. In total, 36 shots were fired by a Ricker wavelet, each with a
dominant frequency of 15 Hz. Each shot was located at a depth of 0.06 km with an interval
of 100 m. The first shot was located at x = 10 m. A maximum of 361 receivers were deployed
with fix-spread acquisition geometry and the receivers were fixed at a depth of 0.02 km.
The time-sampling interval was 1.0 ms, and the maximum recording time was 2.0 s.

g/cm’ (b) km/s
3.2
7.3
3.0 6.6
2.8 5.9
5.2
2.6
4.5
. . 2.4 | . . . . . . 38
2 3 0 1 2 3
() km/s

Depth (km)

0
4.2
3.7
-1
3.2
2.7
-2
—_— 2.2
0 1 2 3

Distance (km)

Figure 1. The real layered velocity model: (a) Density; (b) P-wave velocity; (c) S-wave velocity.

Figure 1 shows the real P- (Figure 1a) and S-wave (Figure 1b) velocity models to
generate the synthetic seismic data (observed data), whereas Figure 2 shows those of a
Gaussian smoothed version used in the migration. The ERTM images of PP and PS are
shown in Figures 3a and 3b, respectively, while those of inverted images generated by
ECLSRTM after 20 iterations are shown in Figures 3c and 3d. Compared to the ERTM
images, the inverted images have a more balanced amplitude, higher resolution, and
less noises.
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Depth (km)
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|
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Depth (km)

|
—_

2 3 0 1 2 3

(©) km/s

0
4.2
3.7
-1
3.2
2.7
-2
—_— 2.2
0 1 2 3

Distance (km)

Depth (km)

Figure 2. The smoothed layered velocity model: (a) Density; (b) P-wave velocity; (c) S-wave velocity.

(b)

(d)

Distance (km) Distance (km)

Figure 3. Migration images of the layered model: (a) PP image of ERTM; (b) PS image of ERTM; (c) PP
image of ECLSRTM after 20 iterations using L-BFGS; (d) PS image of ECLSRTM after 20 iterations
using L-BFGS.

To verify the effectiveness of the L-BFGS method, we adopted the CG and L-BFGS
methods for comparison. Figure 4 shows the convergence rate of the CG and L-BFGS
methods, respectively. The L-BFGS method exited at the 20-th iteration to reach the criterion
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value of 0.001, whereas the CG method exited at the 29-th iteration thus demonstrating a
lower efficiency.

— CG
-0.3 ~—~"L-BFGS f

0.4t

0.5+

-0.6

Iteration

Figure 4. Convergence of the objective function in the case of the layered model. Solid and dashed
lines denotes the result in reference to CG and L-BFGS, respectively.

Figure 5a,b shows the horizontal and vertical seismograms of the 19-th synthetic
shot with muted direct waves, respectively. Figures 5c and 5d shows the horizontal and
vertical components of the initial simulated data calculated with the initial stacked image
rg, whereas Figures 5e and 5f shows those of the inverted simulated data generated by
ECLSRTM after 20 iterations, respectively. It can be seen that the simulated data calculated
by the Born approximation using the inverted images approached the synthetic (observed)
data gradually. To verify the similarity between the simulated data and observed data,
we extracted traces from the 19-th shot at x = 400 m, as shown in Figure 6. The solid,
solid-dotted, and dashed lines denote the synthetic (observed) data, initial data generated
by ERTM, and inverted (simulated) data generated by ECLSRTM after 20 iterations, respec-
tively. In Figure 6, it can be observed that the dashed line, i.e., the inverted simulated data
generated by the proposed method, matched pretty well with the synthetic record.

Figure 7a,b shows the wavenumber spectra of the migrated PP and PS image obtained
by ERTM, while Figure 7c,d shows those obtained by ECLSRTM, respectively. Compared to
the initial ERTM images of PP and PS, the wavenumber spectra of the inverted images after
20 iterations showed higher wavenumber components, which proved the higher resolution
of ECLSRTM.

3.2. SEG/SALT Model

The second example involves an application to the SEG/SALT model as shown in
Figure 8, while Figure 9 shows those of a Gaussian smooth version used in migration. The
subsalt model is manifested as complex subsurface structures and is one of the most chal-
lenging problems due to the poor illumination beneath salt bodies. This model consisted
of 1290 x 300 grid cells in the horizontal and vertical directions with a 10 m grid spacing
in all directions. There were 41 shots in total fired by a Ricker wavelet with a dominant
frequency of 15 Hz. Each shot was located at a depth of 0.06 km and was generated with
an interval of 0.2 km. The first shot was located at x = 2450 m. The number of receivers was
1290 with a fixed-spread acquisition at the surface. The time-sampling interval was 1.0 ms,
and the maximum recording time was 3.5 s.
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Times (s)
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Figure 5. The 19-th shot records (direct waves are muted) of the layered model: (a) Horizontal
component of synthetic data; (b) Vertical component of synthetic data; (c) Horizontal component of
simulated data using ERTM; (d) Vertical component of simulated data using ERTM; (e) Horizontal
component of simulated data using ECLSRTM after 20 iterations; (f) Vertical component of simulated
data using ECLSRTM after 20 iterations.

Figure 10a,b shows the migrated PP and PS images, respectively, while Figure 10c,d
shows those generated by ECLSRTM after 18 iterations using the L-BFGS method, respec-
tively. Compared with the initial images generated by ERTM, the inverted images obtained
a more balanced amplitude and more even illumination in deep structures, and the shape of
the subsalt was sharper, which proved a higher resolution. In particular, it can be seen that
the faults pointed out by red arrows exhibited a higher resolution, as shown in Figure 10.
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Figure 6. Traces extracted from the 19-th shot of the layered model at x = 400 m.
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Figure 7. Wavenumber spectra of images in the case of the layered model: (a) Initial PP image using
ERTM; (b) Initial PS image using ERTM; (c) Inverted PP image using ECLSRTM after 20 iterations;
(d) Inverted PS image using ECLSRTM after 20 iterations.



Processes 2022, 10, 288 13 of 19

(a) g/cm’ (b) km/s
O 1 1 1 1 1 1 1 1
’é‘ 2.46 — — 4.4
2 2.36 ' 30
% 2.26 3.4
A 2.16 2.9
2.06 2.4
(c) km/s
04
. 2.6
g
< 2.2
=]
& 1.8
A 1.4
1.0

Distance (km)

Figure 8. The real SEG/SALT velocity model: (a) Density; (b) P-wave velocity; (c) S-wave velocity.
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Figure 9. The smoothed SEG/SALT velocity model: (a) Density; (b) P-wave velocity; (c) S-wave velocity.

To further verify the efficient convergence rate of the L-BFGS method in the complex
model, we analyzed the convergence rate of the CG and L-BFGS methods, as shown in
Figure 11. The solid and dashed lines denote the CG and L-BFGS methods, respectively. It
can be observed that the convergence curve of the L-BFGS method became flat at the 15th
iteration and exited at the 18-th iteration when the relative change of the objective value
met the stopping criterion of 0.0002, whereas the curve of the CG method became flat after
25 iterations and exited at the 29-th iteration. This demonstrates that the L-BFGS method is
relatively efficient, and can drive the value of the objective function so that it converges to
the minimum at a faster rate.
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(a) Distance (km) (b) Distance (km)

(c) (d)

Depth (m)

Figure 10. Migration images of the SEG/SALT model: (a) PP image of ERTM; (b) PS image of
ERTM,; (c) PP image of ECLSRTM after 18 iterations using L-BFGS; (d) PS image of ECLSRTM after
18 iterations using L-BFGS.
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Figure 11. Convergence of the objective function in the case of the SEG/SALT model. Solid and
dashed lines denote the results in reference to CG and L-BFGS, respectively.

Figure 12a,b shows the horizontal and vertical components of the synthetic data
(observed) generated by the real SEG/SALT velocity model, whereas Figure 12¢,d shows
those of the initial simulated data calculated by the initial stacked image, and Figure 12e,f
shows those of the inverted simulated data obtained by ECLSRTM after 18 iterations,
respectively. It can be observed that the simulated data obtained by the inverted images
approached the observed data gradually.

To verify the similarity between the simulated data and observed data, we extracted
traces from the 10-th shot at x = 4250 m, as shown in Figure 13. The solid, solid-dotted,
and dashed lines denote the synthetic (observed) data, initial data generated by ERTM,
and inverted (simulated) data generated by ECLSRTM after 18 iterations, respectively.
Figure 13b shows the zoomed view of the red dashed rectangle in Figure 13a between
0.665 s to 1.025 s. In Figure 13, it can be seen that the dashed line, i.e., the inverted simulated
data obtained by the proposed method, matched pretty well with the synthetic (observed)
record. It can be observed that the reflected events of the initial seismograms generated by
conventional ERTM were weak in the deep structures, while the amplitude of the events of
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the inverted seismograms generated by the proposed method were more consistently even
in both horizontal and vertical directions.

(a) Distance (km) (b) Distance (km)
0 3 6 9 12 0 3 6 9 12

Time (s)

(c) (d)

Time (s)

O)

Time (s)

Figure 12. The 10-th shot records (direct waves are muted) of the SEG/SALT model: (a) Horizontal
component of synthetic data; (b) Vertical component of synthetic data; (c) Horizontal component of
simulated data using ERTM; (d) Vertical component of simulated data using ERTM; (e) Horizontal
component of simulated data using ECLSRTM after 18 iterations; (f) Vertical component of simulated
data using ECLSRTM after 18 iterations.
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Figure 13. Traces extracted from the 10-th shot at x = 4250 m. Solid, solid-dotted, and dashed lines
denote the synthetic (observed) data, initial data generated by ERTM, and inverted (simulated) data
generated by ECLSRTM after 18 iterations, respectively: (a) Traces extracted from the 10-th shot at
x = 4250 m; (b) Zoomed view of the Figure 13a in the red dashed region from time 0.665 s to 1.025 s.

To further verify the improvement of the resolution, we calculated the wavenumber
spectra of the PP and PS images, as shown in Figure 14. Figure 14a,b shows the wavenumber
spectra of the initial PP and PS images generated by ERTM, while Figure 14¢,d shows those
of the inverted images obtained by ECLSRTM after 18 iterations, respectively. Compared
with traditional ERTM, we verified that the wavenumber spectra of the inverted images
had higher wavenumber components, thus improving the resolution of the inverted images.

@) 4 B (b)

0.2

=0.2;

(d)

0.24

=0.2;

-0.4 -02 0 0.2 04 -04 -02 0 0.2 0.4
k. k,

Figure 14. Wavenumber spectra of the images in the case of the SEG/SALT model: (a) Initial PP
image using ERTM; (b) Initial PS image using ERTM; (c) Inverted PP image using ECLSRTM after
18 iterations; (d) Inverted PS image using ECLSRTM after 18 iterations.

4. Discussion

In contrast with the inversion schemes of impedance, P- and S-wave velocity models,
and other forms of elastic parameters, we chose to invert the reflectivity images, which
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represent physical meanings in geological interpretations. We deduced the de-migration
operator that needs no separation of seismic records in comparison with works of the
conventional ELSRTM of multicomponent seismic data, which reduce the cost of compu-
tation and remove the accurate velocity model dependence required by the separation of
seismic records.

As shown by Zhang et al. (2015) and Liu et al. (2016), CLSRTM is expected to
be more practical and robust than the amplitude-matching-based LSRTM. It relaxes the
amplitude matching and stresses the phase information approximate for the observed
seismic data. However, it shares the common shortcomings of LSRTM, i.e., the accuracy
of the migration velocity model, when compared to ray theory-based LSM, such as the
Kirchhoff least-squares migration. We will further test its potential application in real data.

5. Conclusions

We developed a new inversion scheme for the ECLSRTM method for multicomponent
seismic data to obtain reflectivity images. Inversion for the reflectivity rather than param-
eter perturbations has physical meanings in interpreting the physical properties of the
subsurface media. Compared with alternative ELSRTM methods, the proposed ECLSRTM
method relaxes on the amplitude matching and uses phase constraints, which are expected
to be robust. Synthetic examples show that our ECLSRTM improved the image quality,
obtained a higher resolution, balanced the amplitude, and compensated for illumination.
Based on the linear characteristic of a pair of operators, we derived both the migration
and de-migration operators of the ECLSRTM in heterogeneous media. The de-migration
operator only requires the reflectivity images of PP and PS to generate the simulated data,
without extra calculations of the decomposition of the P- and S-mode wavefields compared
with the conventional ELSRTM. Furthermore, we applied the ASL formula and the L-BFGS
method for ECLSRTM to accelerate the convergence rate. As can be seen in the numerical
tests, the L-BFGS method is more efficient in that it can derive the value of the objective
function value to the minimum. In addition, compared with the conventional LSRTM (Gu
et al., 2019), our scheme removes the requirement of the separation of seismic records that
depends on an accurate velocity model. However, an accurate velocity model is usually un-
available, which further verifies that our method is more practical. Therefore, the presented
method is expected to be applicable to real data.
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