Non-chondritic HSE budget in Earth’s upper mantle evidenced by abyssal peridotites from Gakkel ridge (Arctic Ocean)

Chuan-Zhou Liu a,b,⁎, Jonathan E. Snow b,c, Gerhard Brügmann b, Eric Hellebrand b,d, Albrecht W. Hofmann b

a State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
b Max-Planck Institut für Chemie, Abteilung Geochemie, Mainz, 55020, Germany
c Department of Geosciences, University of Houston, Houston, Texas 77204, USA
d Department of Geology and Geophysics, University of Hawaii, Honolulu, Hawaii 96822, USA

ARTICLE INFO

Article history:
Received 14 January 2009
Received in revised form 2 April 2009
Accepted 3 April 2009
Available online 6 May 2009

Editor: R.W. Carlson

Keywords:
HSE
abyssal peridotites
Gakkel ridge
PUM

ABSTRACT

Constraints on the highly siderophile element (HSE: including Os, Ir, Ru, Pt, Pd and Re) budget of the upper mantle upwelling beneath mid-ocean ridges have until now been based on samples that have experienced varying degrees of alteration, partial melting and secondary igneous processes. Here we present results from a set of abyssal peridotites that have been relatively unaffected by these phenomena. Eighteen abyssal peridotites from two localities along the ultra-slow spreading Gakkel Ridge (Arctic Ocean) were selected for this study. Samples from one locality (PS66-238) are extremely fresh, whereas those from HLY0102-D70 are typical abyssal serpentinites. Comparison of HSE data between fresh peridotites and weathering products supports the contention that HSE are stable during serpentinization, but that Pd and Re are mobile during subsequent weathering. HSE budgets of spinel lherzolites suggest that all platinum group elements (PGEs; including Os, Ir, Ru, Pt and Pd) are compatible during very low degree of partial melting (5–8%), whereas Re behaves as an incompatible element. Harzburgites from each locality were subjected to ~12% fractional partial melting, which is lower than that expected for total consumption of sulfides in mantle peridotites (ca. 16%). The harzburgites are depleted in PPGE (Pt, Pd) and Re relative to IPGE (Os, Ir, Ru), which reflects the extraction of sulfide melt along with the silicate melt. Low bulk-rock contents of both Na₂O and TiO₂ in the fresh PS66-238 lherzolites indicate that they were not transformed from harzburgites through melt refertilization, but represent pristine fertile mantle rocks. Their systematic suprachondritic Ru/Ir and Pd/Ir ratios, but chondritic Pt/Ir ratios, cannot be ascribed to partial melting or secondary igneous processes. This signature may reflect the primary HSE signature of the Earth’s upper mantle. Non-chondritic HSE patterns discovered in PS66-238 lherzolites are consistent with the primitive upper mantle (PUM) inferred from the study of orogenic peridotites and mantle xenoliths.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

It is well known that the iron-loving highly siderophile elements (HSE) in mantle rocks are capable of providing important information about the characteristics of materials and processes of early Earth accretion and core formation. Due to their high metal/silicate partition coefficients ($D^{M/S}$), HSE in the silicate Earth were almost completely stripped from the mantle during core–mantle separation in the early Earth. For this reason, vanishingly small levels of the HSE (by a factor of about 10^{-6}) are expected to have remained in the modern mantle. However, HSE in mantle peridotites from many different tectonic settings are only approximately 150 times less abundant relative to chondritic meteorites (Jagoutz et al., 1979; Morgan, 1986; Morgan et al., 2001), a much higher concentration than would be expected from metal-silicate equilibrium partitioning. The excess HSE contents, together with their broadly chondritic abundance ratios, have been generally explained by the ‘late-veneer’ hypothesis (Chou, 1978; Jagoutz et al., 1979; Morgan, 1986; O’Neill, 1991; Schmidt et al., 2000; Holzheid et al., 2000; Meisel et al., 2001; Morgan et al., 2001), in which nearly all HSE in the early Earth have been stripped into the core and the HSE budget in the modern mantle is dominated by late-accreted materials. Other hypotheses, e.g., inefficient core formation (Jones and Drake, 1986) and high-pressure core formation (Murthy, 1991; Righter and Drake, 1997), have also been proposed. Due to the divergent chemical behaviors of the HSE during planetary partitioning processes between metal and silicates, and between solid metals and liquid metals, it is difficult for these models to account for both high abundances of HSE and chondritic HSE ratios in Earth’s mantle (Becker et al., 2006). For example, the high-pressure core formation model requires the bulk-earth HSE to have concentrations proportional to metal-silicate partition

⁎ Corresponding author: State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China. Tel.: +86 10 82988547; fax: +86 10 62010846.
E-mail address: chzliu@mail.iggcas.ac.cn (C.-Z. Liu).
coefficients for the appropriate pressure range of core formation to account for chondritic HSE ratios in the derived mantle. This is unlikely, owing to the different low-temperature geochemical behaviors of the different HSE on one hand (Lorand et al., 2008), and the current controversy on HSE partitioning at high pressures on the other hand (Cottrell and Walker, 2006; Ertel et al., 2006).

Non-chondritic HSE patterns were first reported in orogenic lherzolites (Pattou et al., 1996) and then in mantle peridotites from different settings (Snow and Schmidt, 1998; Rehkämper et al., 1999; Becker et al., 2006). The models proposed to account for the non-chondritic HSE features remain highly controversial (Snow and Schmidt, 1998; Rehkämper et al., 1999; Luguet et al., 2003). For example, addition of outer-core materials back into the mantle has been proposed to account for the non-chondritic HSE signatures in mantle peridotites (Snow and Schmidt, 1998). Alternatively, Rehkämper et al. (1999) suggested that supra-chondritic Pd/Ir and Re/Ir ratios observed in some mantle peridotites are the result of universal secondary magmatic processes and that the ‘late-veneer’ hypothesis is thus still viable. Secondary magmatic processes, such as melt percolation, have also been commonly invoked as the cause of the non-chondritic HSE compositions observed in mantle xenoliths and massif peridotites (Lorand et al., 1999; Lorand and Alard, 2001; Lorand et al., 2003; Lorand et al., 2004; Pearson et al., 2004; Ionov et al., 2006).

To circumvent the potential effects of secondary processes, the composition of the primitive upper mantle (PUM), which represents a hypothetical composition for the silicate Earth before any mantle–crust differentiation or mantle-melting event, has been used to discuss the processes occurring in the early Earth. Based on global mantle xenoliths,

Fig. 1. Backscattered Electron (BSE) image of base metal sulfides (BMS) in fresh Gakkel abyssal peridotites (a–f). (a) blocky pentlandite intergrown with pyrrhotite. (b) sulfide (Pn) included in olivine. (c) small-sized sulfide droplet as little trails of the sulfide inclusions, locating within the fracture planes radiating from these inclusions. (d) tiny sulfides droplets in alignment with the lamellae of clinopyroxene. (e) interstitial sulfides, euhedral to anhedral, disseminating among the silicate and spinel matrix. (f) tiny Cu–Ni-rich sulfides (Sulf2), together with assemblage of little spinel (Sp2) and cpx (Cpx2), distributing along the boundary of the opx and/or olivine. Py = pyrrhotite; Pent = pentlandite; Ol = olivine; Opx = orthopyroxene; Cpx = clinopyroxene; Sp = spinel; Sulf = sulfide.
the 187Os/188Os ratios of the modern PUM have been inferred to be similar to those of some ordinary and enstatite chondrites but are distinctly higher than the ratios in carbonaceous chondrites. This suggests that the late accreted materials had nebular histories most like those of ordinary and enstatite chondrites, rather than carbonaceous chondrites (Meisel et al., 1996; Meisel et al., 2001). By the use of massif peridotites and mantle xenoliths, Becker et al. (2006) inferred that the PUM has a non-chondritic HSE pattern, which is different from that of the known chondrites. The reliability of including the composition of massif-type lherzolites to estimate the PUM, however, has been recently questioned (Lorand et al., 2008), because many orogenic lherzolites are secondary rocks resulting from melt refertilization rather than pristine mantle rocks (Le Roux et al., 2007).

Mantle rocks that have experienced relatively little melt depletion and melt refertilization are ideal to constrain the HSE compositions of the PUM. For this reason, we have conducted a study of abyssal peridotites from Gakkel Ridge. Arctic Ocean, most of which are fertile lherzolites that experienced little melt extraction or late refertilization. Furthermore, samples from one dredge haul are extremely fresh.

2. Sample descriptions

Gakkel Ridge is the slow-spreading-mid-ocean ridge in the world, with full spreading rates ranging from 1.4 cm/yr at the western end to 0.7 cm/yr at the eastern end (Michael et al., 2003). Samples in the present study were selected from two dredge hauls, HLY0102-D70 and PS66-238, from which Os isotopes have previously been reported (Liu et al., 2008). Dredge haul HLY0102-D70 was recovered in 2001 during the US–German joint AMORE 2001 cruise, and represents the easternmost peridotites collected from Gakkel Ridge. Dredge haul PS66-238 was recovered in 2004 during PFS Polarstern cruise ARK XVII-2 from the ‘amagmatic’ western end of the Sparsely Magmatic Zone (3°E–8°E). In this region, no basalt but only mantle peridotites have been recovered (Snow and Petrology-Group-ARK-XV-2, 2007), and the seismic crust is inferred to consist entirely of variably serpentinized peridotite (Jokat et al., 2003).

Table 1

Whole-rock major elements of D70 and PS66-238 samples.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Cruise #</th>
<th>Lithology</th>
<th>SiO$_2$</th>
<th>TiO$_2$</th>
<th>Al$_2$O$_3$</th>
<th>Cr$_2$O$_3$</th>
<th>FeO</th>
<th>MnO</th>
<th>MgO</th>
<th>NiO</th>
<th>CaO</th>
<th>Na$_2$O</th>
<th>K$_2$O</th>
<th>LOI</th>
<th>Total</th>
<th>Mg#</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS66-238</td>
<td>D70-56</td>
<td>Sp LH</td>
<td>38.41</td>
<td>0.03</td>
<td>1.79</td>
<td>0.40</td>
<td>7.76</td>
<td>0.11</td>
<td>36.10</td>
<td>0.27</td>
<td>2.14</td>
<td>0.12</td>
<td>0.01</td>
<td>13.53</td>
<td>100.68</td>
<td>0.89</td>
</tr>
<tr>
<td></td>
<td>D70-58</td>
<td>Sp LH</td>
<td>41.38</td>
<td>0.08</td>
<td>2.90</td>
<td>0.42</td>
<td>8.16</td>
<td>0.12</td>
<td>34.77</td>
<td>0.27</td>
<td>3.24</td>
<td>0.14</td>
<td>0.01</td>
<td>9.40</td>
<td>100.88</td>
<td>0.88</td>
</tr>
<tr>
<td></td>
<td>D70-62</td>
<td>Sp LH</td>
<td>38.81</td>
<td>0.03</td>
<td>1.13</td>
<td>0.30</td>
<td>7.63</td>
<td>0.12</td>
<td>38.04</td>
<td>0.29</td>
<td>0.35</td>
<td>0.13</td>
<td>0.01</td>
<td>13.77</td>
<td>100.62</td>
<td>0.90</td>
</tr>
<tr>
<td></td>
<td>D70-64</td>
<td>Sp LH</td>
<td>38.90</td>
<td>0.03</td>
<td>1.47</td>
<td>0.32</td>
<td>7.94</td>
<td>0.09</td>
<td>37.63</td>
<td>0.29</td>
<td>1.29</td>
<td>0.30</td>
<td>0.01</td>
<td>12.71</td>
<td>100.76</td>
<td>0.90</td>
</tr>
<tr>
<td></td>
<td>D70-73</td>
<td>Sp LH</td>
<td>38.41</td>
<td>0.06</td>
<td>2.26</td>
<td>0.33</td>
<td>7.79</td>
<td>0.12</td>
<td>33.08</td>
<td>0.24</td>
<td>5.24</td>
<td>0.14</td>
<td>0.01</td>
<td>12.46</td>
<td>100.22</td>
<td>0.88</td>
</tr>
<tr>
<td></td>
<td>D70-75</td>
<td>Sp LH</td>
<td>37.43</td>
<td>0.04</td>
<td>2.15</td>
<td>0.34</td>
<td>7.32</td>
<td>0.11</td>
<td>32.96</td>
<td>0.24</td>
<td>5.41</td>
<td>0.12</td>
<td>0.01</td>
<td>14.89</td>
<td>101.03</td>
<td>0.89</td>
</tr>
<tr>
<td></td>
<td>D70-91</td>
<td>Sp LH</td>
<td>40.16</td>
<td>0.06</td>
<td>2.75</td>
<td>0.41</td>
<td>8.09</td>
<td>0.12</td>
<td>34.25</td>
<td>0.24</td>
<td>2.45</td>
<td>0.05</td>
<td>0.01</td>
<td>11.45</td>
<td>100.05</td>
<td>0.88</td>
</tr>
<tr>
<td></td>
<td>PS66-238</td>
<td>Sp LH</td>
<td>43.28</td>
<td>0.03</td>
<td>1.79</td>
<td>0.30</td>
<td>9.04</td>
<td>0.13</td>
<td>41.64</td>
<td>0.30</td>
<td>1.96</td>
<td>0.07</td>
<td>0.01</td>
<td>1.14</td>
<td>100.15</td>
<td>0.89</td>
</tr>
<tr>
<td></td>
<td>PS66-238</td>
<td>Sp LH</td>
<td>43.30</td>
<td>0.05</td>
<td>2.30</td>
<td>0.44</td>
<td>9.67</td>
<td>0.14</td>
<td>40.65</td>
<td>0.30</td>
<td>2.26</td>
<td>0.06</td>
<td>0.00</td>
<td>0.19</td>
<td>99.38</td>
<td>0.88</td>
</tr>
</tbody>
</table>

Samples selected from dredge PS66-238 comprise nine spinel lherzolites, one plagioclase lherzolite and one harzburgite. Notably, they are extremely fresh with little to no detectable serpentinite in thin section. Each sample, however, has a rim of a cm-thick brown-yellow weathered rock. Most fresh interiors have loss on ignition (LOI) close to 0, with only two of them around 1%. The altered rims have slightly higher LOI (~3%) relative to their corresponding interiors, but still much lower than those of the typical serpentinites (~10%). Samples from dredge HLY0102-D70, consisting of six lherzolites and one harzburgite, are typical serpentinites with LOI of 9–14%.

All PS66-238 samples were examined for base-metal sulfides (BMS) under the microscope. Lherzolites have higher modal contents of sulfides than the harzburgite. Blocks of pentlandite is by far predominant and compositionally homogeneous, and sometimes intergrown with pyrrhotite. Occurrences of BMS in Gakkel peridotites are similar to those observed from orogenic peridotites and mantle xenoliths, i.e., they are either included in silicates or interstitial among silicate matrix (Griffin et al., 2004; Lorand and Gregoire, 2006). Sulfides included in silicates or spinels are generally rounded to euhedral single sulfide blebs, with diameters up to 200 μm (Fig. 1b). Consistent with previous observations (Lorand and Gregoire, 2006), these sulfide inclusions are commonly surrounded by fracture planes, which may or may not communicate with the grain boundaries of host silicates. These fracture planes are also preferential pathways for later serpentinization of abyssal peridotites, and possibly result from differential contraction of silicates and enclosed sulfides during cooling (Andersen et al., 1987; Dromgoole and Pasteris, 1987). Tiny (1–20 μm in diameter) sulfide droplets are located within the fracture planes radiating from these inclusions (Fig. 1c). In particular, some are distributed in alignment with the lamellae of pyroxenes (Fig. 1d). Small sulfides sometimes are also included within the recrystallized areas of clinopyroxenes. Sulfides interstitial or disseminated within the silicate matrix are euhedral to anhedral in shape, with maximum size up to 200 μm (Fig. 1e). Small sulfides, together with secondary spinels (sp$_2$) and cpx (cpx$_2$), can be observed to be interstitial along the boundary of pyroxene and olivine (Fig. 1f), which
has been interpreted as secondary sulfides added from percolating melts (Alard et al., 2000; Seyler et al., 2001; Luguet et al., 2003).

3. Methods

Major element concentrations were determined on glass with a Phillips PW 1404 X-ray Fluorescence (XRF) spectrometer at the University of Mainz. Sulfide major element compositions were analyzed on a JEOL JXA-8200 electron probe microanalyzer (EPMA) at the Max-Planck Institute for Chemistry (MPI), Mainz, using an acceleration potential of 20 kV, a beam current of 20 nA and a beam diameter of 3 μm. Only sulfides in fresh PS66-238 samples were measured for major element compositions, whereas those in D70 serpentinites were not. Whole-rock sulfur fractions were determined with a carbon-sulfur analyzer CSA (carbon-sulfur analyzer) 50003 (Leybold-Heraeus) at MPI. From each sample (100–200 mg powder) three or four duplicates were measured, and the relative 2σ error of the duplicates is on average 2% at S-concentration levels of 50–100 μg/g. The sulfur content of all Gakkel peridotites is far higher than the detection limit (10 ppm).

HSE were analyzed by isotope dilution at MPI, Mainz. Detailed analytical procedures have been previously described by Büchl et al. (2002) and Liu et al. (2008). Up to 2 g powders, together with Re–Os and HSE isotope tracers (186Rhenium, 188Rhenium, 188Osmium, 189Rhenium, 189Ir and 198Palladium) and mixed acids (3 ml 12N HCl and 7 ml 16N HNO3), were digested in a high-pressure asher (HPA-S) at 100 bar and 160 °C for 16 h. Then, HSE were separated from the whole rock matrix using the procedure described by Brügmann et al. (1999). Osmium was extracted from the sample solution by solvent extraction into liquid bromine and further purified by micro-distillation used the method described by Birck et al. (1997). Afterwards, Ru, Pd, Re, Ir and Pt were sequentially separated from the solution by using anion exchange columns, applying a technique modified after Rehkämper and Halliday (1997).

Osmium concentrations and isotopes were measured by N-TIMS on a Finnigan MAT-262 instrument. Details are given in Liu et al. (2008). The concentrations of other HSE were measured on a Nu Plasma MC-ICPMS, which allows measurements by static multi-collection and has the advantage that fractionation corrections are done by internal normalization or by external correction using an admixed element of similar mass. External standards were added for the mass-fractionation correction, i.e., Ir added for Re, Mo for Ru, Ag for Pd, and Os for Ir + Pt. Blank contributions are negligible because all samples have at least 20 times higher concentrations compared with the average blank compositions. Repeated digestions of fresh aliquots of the ultramafic rock standard UB-N indicate a reproducibility of 10% for the HSE concentrations (Büchl et al., 2002). The reproducibility of the concentrations, based on three duplicate analyses of samples from the present study, is 11% for Os, 3% for Ir, 12% for Ru, 5% for Pd, 9% for Pt, 9% for Re. The HSE patterns themselves were reproduced very well. Thus, the elemental ratios are less affected, although the analytical uncertainty sometimes is relatively high. The latter might reflect the heterogeneous distribution of the HSE on a small scale, the so-called ‘nugget effect’.

4. Results

Whole-rock major elements of all samples are shown in Table 1. The D70 samples have lower MgO contents compared to the PS66-238 fresh peridotites, which reflect the loss of Mg during seawater alteration of abyssal peridotites on the seafloor (Snow and Dick, 1995). The common slightly lower MgO contents of the altered rims of the PS66-238 samples compared to their corresponding fresh cores are consistent with this hypothesis as well. The D70 samples also have

Table 2

Major element compositions of representative sulfides in the PS66-238 samples.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Assemblage</th>
<th>Fe</th>
<th>Ni</th>
<th>Co</th>
<th>Cu</th>
<th>S</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS66-238-2</td>
<td>Fe</td>
<td>32.27</td>
<td>33.14</td>
<td>0.47</td>
<td>0.03</td>
<td>32.18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ni</td>
<td>33.05</td>
<td>32.84</td>
<td>0.23</td>
<td>0.01</td>
<td>32.07</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Co</td>
<td>29.30</td>
<td>0.08</td>
<td>0.05</td>
<td>0.05</td>
<td>32.16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cu</td>
<td>40.04</td>
<td>0.03</td>
<td>0.05</td>
<td>0.05</td>
<td>32.48</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>36.62</td>
<td>31.98</td>
<td>0.38</td>
<td>0.29</td>
<td>37.98</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>34.49</td>
<td>32.89</td>
<td>0.39</td>
<td>0.29</td>
<td>34.24</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample</th>
<th>Assemblage</th>
<th>Fe</th>
<th>Ni</th>
<th>Co</th>
<th>Cu</th>
<th>S</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS66-238-5</td>
<td>Fe</td>
<td>36.05</td>
<td>3.64</td>
<td>0.43</td>
<td>0.03</td>
<td>36.18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ni</td>
<td>31.14</td>
<td>2.83</td>
<td>0.21</td>
<td>0.05</td>
<td>30.91</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Co</td>
<td>28.30</td>
<td>0.30</td>
<td>0.05</td>
<td>0.05</td>
<td>28.29</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cu</td>
<td>26.98</td>
<td>0.58</td>
<td>0.05</td>
<td>0.05</td>
<td>26.93</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S</td>
<td>26.43</td>
<td>2.65</td>
<td>0.30</td>
<td>0.30</td>
<td>26.35</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>27.48</td>
<td>2.97</td>
<td>0.30</td>
<td>0.30</td>
<td>27.45</td>
<td></td>
</tr>
</tbody>
</table>
The HSE abundances of the D70 samples are less than 0.01×CI (CI Re and Os data from Liu et al. (2008). The D70 samples have very low TiO$_2$ abundances (0.03%–0.08%). This suggests that both Ca and Na were added to D70 samples during seawater alteration. Both D70 and PS66-238 samples have very low TiO$_2$ abundances (0.03%).

Replicate compositions of different sulfides in the fresh PS66-238 samples are listed in Table 2. Sulfides in all samples are mainly composed of pentlandite and pyrrhotite. Secondary Cu-rich sulfides commonly reported in previous studies (Luguet et al., 2003; Alard et al., 2005) are seldom observed in the “fresh” Gakkel abyssal peridotites, and chalcopryite grains have only been discovered in one sample (PS66-238-2). Previous studies observe sulfides in mantle peridotites that show differences in their major elements according to whether they are found on grain boundaries or grain interiors (Alard et al., 2005; Lorand and Gregoire, 2006). By contrast, no significant difference among these different types of sulfides is observed in the PS66-238 samples.

The fresh dredge PS66-238 samples have much lower bulk-rock sulfur contents relative to the D70 serpentinites (Table 3). Furthermore, sulfur contents of the PS66-238 samples (72–163 ppm) are also lower than in the primitive mantle (ca. 250 ppm; McDonough and Sun, 1995). The fresh interiors and the altered rims from the same PS66-238 samples do not have distinguishably different sulfur contents. Sulfur contents of PS66-238 samples display a weak positive correlation with their bulk Al$_2$O$_3$ contents (0.03–0.09%).

Representative compositions of different sulfides in the fresh PS66-238 samples are listed in Table 2. Sulfides in all samples are mainly composed of pentlandite and pyrrhotite. Secondary Cu-rich sulfides commonly reported in previous studies (Luguet et al., 2003; Alard et al., 2005) are seldom observed in the “fresh” Gakkel abyssal peridotites, and chalcopryite grains have only been discovered in one sample (PS66-238-2). Previous studies observe sulfides in mantle peridotites that show differences in their major elements according to whether they are found on grain boundaries or grain interiors (Alard et al., 2005; Lorand and Gregoire, 2006). By contrast, no significant difference among these different types of sulfides is observed in the PS66-238 samples.

The fresh dredge PS66-238 samples have much lower bulk-rock sulfur contents relative to the D70 serpentinites (Table 3). Furthermore, sulfur contents of the PS66-238 samples (72–163 ppm) are also lower than in the primitive mantle (ca. 250 ppm; McDonough and Sun, 1995). The fresh interiors and the altered rims from the same PS66-238 samples do not have distinguishably different sulfur contents. Sulfur contents of PS66-238 samples display a weak positive correlation with their bulk Al$_2$O$_3$ contents (0.03–0.09%).

Representative compositions of different sulfides in the fresh PS66-238 samples are listed in Table 2. Sulfides in all samples are mainly composed of pentlandite and pyrrhotite. Secondary Cu-rich sulfides commonly reported in previous studies (Luguet et al., 2003; Alard et al., 2005) are seldom observed in the “fresh” Gakkel abyssal peridotites, and chalcopryite grains have only been discovered in one sample (PS66-238-2). Previous studies observe sulfides in mantle peridotites that show differences in their major elements according to whether they are found on grain boundaries or grain interiors (Alard et al., 2005; Lorand and Gregoire, 2006). By contrast, no significant difference among these different types of sulfides is observed in the PS66-238 samples.

The fresh dredge PS66-238 samples have much lower bulk-rock sulfur contents relative to the D70 serpentinites (Table 3). Furthermore, sulfur contents of the PS66-238 samples (72–163 ppm) are also lower than in the primitive mantle (ca. 250 ppm; McDonough and Sun, 1995). The fresh interiors and the altered rims from the same PS66-238 samples do not have distinguishably different sulfur contents. Sulfur contents of PS66-238 samples display a weak positive correlation with their bulk Al$_2$O$_3$ contents (0.03–0.09%).

Representative compositions of different sulfides in the fresh PS66-238 samples are listed in Table 2. Sulfides in all samples are mainly composed of pentlandite and pyrrhotite. Secondary Cu-rich sulfides commonly reported in previous studies (Luguet et al., 2003; Alard et al., 2005) are seldom observed in the “fresh” Gakkel abyssal peridotites, and chalcopryite grains have only been discovered in one sample (PS66-238-2). Previous studies observe sulfides in mantle peridotites that show differences in their major elements according to whether they are found on grain boundaries or grain interiors (Alard et al., 2005; Lorand and Gregoire, 2006). By contrast, no significant difference among these different types of sulfides is observed in the PS66-238 samples.

The fresh dredge PS66-238 samples have much lower bulk-rock sulfur contents relative to the D70 serpentinites (Table 3). Furthermore, sulfur contents of the PS66-238 samples (72–163 ppm) are also lower than in the primitive mantle (ca. 250 ppm; McDonough and Sun, 1995). The fresh interiors and the altered rims from the same PS66-238 samples do not have distinguishably different sulfur contents. Sulfur contents of PS66-238 samples display a weak positive correlation with their bulk Al$_2$O$_3$ contents (0.03–0.09%).

Representative compositions of different sulfides in the fresh PS66-238 samples are listed in Table 2. Sulfides in all samples are mainly composed of pentlandite and pyrrhotite. Secondary Cu-rich sulfides commonly reported in previous studies (Luguet et al., 2003; Alard et al., 2005) are seldom observed in the “fresh” Gakkel abyssal peridotites, and chalcopryite grains have only been discovered in one sample (PS66-238-2). Previous studies observe sulfides in mantle peridotites that show differences in their major elements according to whether they are found on grain boundaries or grain interiors (Alard et al., 2005; Lorand and Gregoire, 2006). By contrast, no significant difference among these different types of sulfides is observed in the PS66-238 samples.

The fresh dredge PS66-238 samples have much lower bulk-rock sulfur contents relative to the D70 serpentinites (Table 3). Furthermore, sulfur contents of the PS66-238 samples (72–163 ppm) are also lower than in the primitive mantle (ca. 250 ppm; McDonough and Sun, 1995). The fresh interiors and the altered rims from the same PS66-238 samples do not have distinguishably different sulfur contents. Sulfur contents of PS66-238 samples display a weak positive correlation with their bulk Al$_2$O$_3$ contents (0.03–0.09%).

Representative compositions of different sulfides in the fresh PS66-238 samples are listed in Table 2. Sulfides in all samples are mainly composed of pentlandite and pyrrhotite. Secondary Cu-rich sulfides commonly reported in previous studies (Luguet et al., 2003; Alard et al., 2005) are seldom observed in the “fresh” Gakkel abyssal peridotites, and chalcopryite grains have only been discovered in one sample (PS66-238-2). Previous studies observe sulfides in mantle peridotites that show differences in their major elements according to whether they are found on grain boundaries or grain interiors (Alard et al., 2005; Lorand and Gregoire, 2006). By contrast, no significant difference among these different types of sulfides is observed in the PS66-238 samples.
elements (PGE) are stable during serpentinization processes because they are all extremely unreactive in a reducing environment (Snow and Schmidt, 1998). Serpentinization of peridotites has thus been thought to be without significant effect on HSE relative abundances other than diluting total HSE contents (Lorand et al., 1993), owing to a volume increase caused by serpentinization of silicate phases (Snow and Schmidt, 1998). Unlike serpentinization, seawater weathering processes occur under an oxidizing environment, and thus, could potentially affect the HSE compositions of abyssal peridotites (Snow and Schmidt, 1998). Decrease of Pd abundance has been observed in altered abyssal peridotites, indicating its mobile character during oxidizing seafloor alteration (Luguet et al., 2003).

Fresh peridotites with weathered rims from Gakkel Ridge provide an opportunity to evaluate the effects of seawater alteration on the HSE composition of abyssal peridotites. In the five analyzed PS66–238 samples, Os, Ir, Ru and Pt show no systematic difference between the weathered rims and the fresh interiors (Fig. 4), which suggests that these elements are not affected by seawater alteration. Therefore, IPGE are immobile and preferentially retained in the serpentinites during alteration, possibly because the magmatic sulfides were still preserved through seafloor alteration. Consistent with the previous conclusion that Pd tends to be mobile during seafloor weathering (Luguet et al., 2003), the altered rims of the five PS66–238 samples have Pd contents lower than those of their interiors (Fig. 4). Furthermore, the analyzed fresh interiors have Re contents either higher than or similar to their corresponding altered rims. This suggests that Re also tends to be mobile during seawater alteration of abyssal peridotites. The following discussion will be focused only on the HSE data of the fresh interiors of the PS66–238 samples.

5.2. Fractionation of HSE during partial melting

It has been widely demonstrated that incongruent melting of sulfides in mantle peridotites produces Cu–Ni-rich sulfide melt, and leaves residual monosulfide solid solution (Mss) in the peridotite residues (Alard et al., 2000; Luguet et al., 2003; Bockrath et al., 2004; Peregodova et al., 2004; Ballhaus et al., 2006). The refractory Mss concentrates Os, Ir and Ru, whereas the Cu–Ni-rich sulfides are

Fig. 3. Diagrams of HSE patterns of (a) HLY0102-D70 and (b) PS66–238 samples. (a) D70 lherzolites have consistent IPGE patterns but variable PPGE and Re patterns. (b) All PS66–238 lherzolites have consistent patterns. Both harzburgite (PS66–238-22) and plagioclase lherzolite (PS66–238-5) have fractionated HSE patterns. The harzburgite has higher contents of I-PGEs relative to P-PGEs and Re, whereas the plagioclase lherzolite has slightly higher Pd and Re contents. The HSE pattern of the D70 harzburgite (D70-62) is similar to that of PS66–238 harzburgite, i.e., higher contents of IPGE and lower PGE and Re. CI-chondrite normalizing values are from Horan et al. (2003).

Fig. 4. Comparison of HSE data between the fresh interiors and the weathered rims. Three of the five analyzed weathered rims have similar IPGE abundances as their interiors. Sample 238–11 has higher contents of IPGE in its weathered rim than its fresh interior, but vice versa in sample 238–39. All weathered rims have higher Pd contents than their corresponding fresh interiors. Only two samples (PS66–238–4 and PS66–238–22) have lower Re contents in their fresh interiors than their weathered rims, whereas other three samples have similar Re contents between interiors and rims.
enriched in Pt, Pd and Re (Alard et al., 2000; Bockrath et al., 2004; Ballhaus et al., 2006). The Cu–Ni-rich sulfide melt could be physically removed along with the basaltic melt, which would result in the depletion of Pt, Pd and Re in the peridotite residues (Ballhaus et al., 2006). In this physical process, fractionation of PGE in mantle peridotides is not controlled by their sulfide/silicate partition coefficients but by their Cu–Ni-rich sulfide/Mss partition coefficients.

By the use of the Cr# [=[Cr/(Cr+Al)] of spinel (Dick and Bullen, 1984; Hellebrand et al., 2001), the PS66-238 spinel lherzolites can be estimated to have experienced 5–8% silicate partial melting. As shown in Fig. 3b, they display consistent HSE patterns. All spinel lherzolites have uniform ratios of both Os/Ir and Ru/Ir along with the melt depletion index (e.g., bulk Al2O3 content) (Fig. 5a and b), indicating the compatible nature of Os, Ir and Ru during partial melting. The horizontal relationship between Pt/Ir and the degree of partial melting (F) shown among all lherzolites (Fig. 6a), suggests that Pt also behaves as a compatible element. Furthermore, all lherzolites have uniform Pt/Pd values for a wide range of bulk Al2O3 contents, indicating that Pd did not fractionate from Pt and the IPGE (Fig. 5c). The lack of fractionation of PGE in the PS66-238 spinel lherzolites suggests that they were not significantly affected by sulfide melt removal during partial melting. By contrast, the harzburgite PS66-238-22 was subjected a higher degree of partial melting (ca. 12%) and displays a fractionated HSE pattern, with depletion of PPGE and Re relative to IPGE (Fig. 3b). Modeling results suggest that the sulfides in mantle peridotites would be totally consumed by about 12% partial melting (Luguet et al., 2003). Therefore, depletion of Pt and Pd in the harzburgite might reflect the total consumption of sulfide in this sample.

To illustrate the fractionation of PGE in the peridotites during melting of mantle sulfides, we modeled the variations of both Pt/Ir and Pd/Ir ratios (Fig. 6), using the method of previous studies (Lorand et al., 1999; Luguet et al., 2003). Here we assume that the DMM contained 150 ppm S before melting and the solubility of S in the basaltic melts is 1000 ppm. Other details and parameters are given in Fig. 6. The result indicates that D_Pt must vary from <2000 to 5000 to account for the subchondritic Pt/Ir ratios in PS66-238 samples (Fig. 6a), which is consistent with previous experimental work (Stone et al., 1990; Fleet et al., 1991). Considering the large variation of Pd/Ir ratios among the different chondrites (Horan et al., 2003), both the CI-chondritic Pd/Ir ratio (1.3) and the higher Pd/Ir value similar to EH4 enstatite chondrites (1.6, e.g., Rehkämper et al. (1999)) were taken for modeling. No matter which Pd/Ir ratio is chosen (Fig. 6b), a very low D_Pd (ca. 2000) value is required to reproduce the Pd content in the harzburgite, which is 5 to 10 times lower than D Ir. This conflicts with previous experimental results (Fleet et al., 1991; Fleet et al., 1999), in which quite similar values for D_Pd were obtained. Depletion of Pd in the harzburgite thus cannot be explained by equilibrium partitioning between sulfide and silicate melt, nor by congruent melting of sulfides along the peridotites solidus. It most likely reflects instead the incongruent melting of mantle sulfide and the drainage of the Cu–Ni-rich sulfide melt by the basaltic melt.

Good positive correlations between Re/Os and bulk Al2O3 ratios shown by all but one lherzolite suggest that Re was incompatible even

Fig. 5. PGE ratios versus bulk Al2O3 contents. (a–b) Both Os/Ir and Ru/Ir ratios of all PS66-238 samples display horizontal lines along the variation of bulk Al2O3 contents. This suggests Os, Ir and Ru behave compatibly during low to moderate degree of partial melting (up to 12%). (c) Pt/Pd ratios of all PS66-238 samples show a flat line with bulk Al2O3 contents, reflecting these two elements were not fractionated during partial melting. (d) All PS66-238 samples but one lherzolite (PS66-238-18) show good positive relationship between Re/Ir ratio and bulk Al2O3 content, which suggests Re is similar to Al during partial melting and also melt refertilization. CC = Carbonaceous Chondrite; OC = Ordinary Chondrite; EC = Enstatite Chondrite; Sp-LH = spinel lherzolite; Pl-LH = plagioclase lherzolite; HZ = harzburgite.
at low degrees of partial melting (Fig. 5d). This is consistent with previous inferences that Re behaves as a moderately incompatible element with a bulk partition coefficient similar to that of aluminum (Reisberg and Lorand, 1995; Shirey and Walker, 1998). This might be because the budget of Re in mantle peridotites is mainly controlled by silicates and spinels (Luguet et al., 2007).

5.3. PS66-238 spinel lherzolites: pristine mantle peridotites or secondary rocks resulting from refertilization of harzburgite?

Based on the structural and geochemical evidence, Le Roux et al. (2007) have recently demonstrated that some lherzolites from the Lherz massif do not represent pristine mantle rocks but instead are secondary rocks formed by refertilization of harzburgites. The authors suggested that most lherzolite massifs represent secondary (refertilized) rather than pristine mantle. Furthermore, it has been shown that Re–Os systematics in some massif lherzolites reflect the refertilization of ancient refractory peridotites with enriched melts (van Acken et al., 2008). Therefore, application of orogenic lherzolites to infer the composition of the PUM (Meisel et al., 2001; Becker et al., 2006) should be approached with caution (Lorand et al., 2008). Clinopyroxene trace element compositions of lherzolites from PS66-238 suggest that they have been refertilized by late melts after low degrees of melt extraction (Liu et al., 2008), which is also supported by the occurrence of plagioclase lherzolite (PS66-238-5). Therefore, it is important to assess whether the PS66-238 lherzolites represent fertile pristine mantle rocks or not.

The following three lines of evidence suggest that the PS66-238 lherzolites were not transformed from harzburgites through melt refertilization. First, the Gakkel Ridge is the slowest spreading mid-ocean ridge in the world, beneath which the abyssal peridotites should be subjected to low degrees of partial melting. Particularly, the PS66-238 samples were collected from the segment with the weakest magnetism, around which no basalt but only peridotites have been recovered (see the Fig. 1 in Liu et al. (2008)). Therefore, the large amounts of melt required to produce lherzolite through refertilization of harzburgite are unlikely to be present in this area.

Second, the lherzolites have only slightly higher contents of both Na2O (0.04–0.08%) and TiO2 (0.05–0.09%) compared to those of the harzburgite PS66-238-22 with 0.03% and 0.04%, respectively. Assuming the refertilizing melts have N-MORB-like compositions with 2% Na2O and 1% TiO2, the amount of melts required should be no larger than 5%. This precludes the formation of lherzolites through impregnation of large amounts of melt (10%) into harzburgite (Le Roux et al., 2007).

Third, their Re–Os isotopes argue against the transformation from harzburgites. The harzburgite PS66-238-22 has higher Os abundance but lower 187Os/188Os ratio compared to the lherzolites. To increase the 187Os/188Os ratio, radiogenic Os would have to be added into the harzburgite along with refertilizing silicate melts, because percolation of pure sulfide melt has been argued against in the PS66-238 samples (Liu et al., 2008). The Os content of harzburgite could be reduced either by addition of large amounts of silicate melt through a dilution effect or by removing the primitive radiogenic Os. The former process is impossible because an unrealistically large volume of melt (>15%) is required to decrease the Os concentration from 6.71 ppb in the harzburgite to 5.46 ppb in PS66-238-39, which has the highest Os concentration among the lherzolites. Removal of primitive radiogenic Os along with addition of radiogenic Os, however, commonly takes place at high melt/rock ratios and open systems, such as during the formation of dunite (Bückl et al., 2002), rather than during melt refertilization processes, which take place at lower melt/rock ratios.

5.4. Non-chondritic HSE of spinel lherzolites from Gakkel Ridge: implications for the HSE composition of the PUM

Notably, both Ru and Pd in all spinel lherzolites from Gakkel ridge are enriched relative to Ir and Os, that is, they have suprachondritic Ru/Ir and Pd/Ir ratios. Rhenium and Pt abundances are not enhanced (Fig. 3b). Suprachondritic Ru/Ir ratios have been widely reported in mantle peridotites from different tectonic settings (Rehkämper et al., 1997; Snow and Schmidt, 1998; Schmidt et al., 2000; Pearson et al., 2004), and has been suggested to be an indigenous characteristic of a large fraction, if not of the whole of the upper mantle (Palme and O’Neill, 2004). Many bulk rock samples of fertile lherzolites also show enrichment of Pd over Ir when normalized to carbonaceous chondrites or even enstatite chondrites (Pattou et al., 1996; Snow and Schmidt, 1998; Schmidt et al., 2000; Pearson et al., 2004), and has been suggested to be an indigenous characteristic of a large fraction, if not of the whole of the upper mantle (Palme and O’Neill, 2004). Many bulk rock samples of fertile lherzolites also show enrichment of Pd over Ir when normalized to carbonaceous chondrites or even enstatite chondrites (Pattou et al., 1996; Snow and Schmidt, 1998; Schmidt et al., 2000; Pearson et al., 2004), and has been suggested to be an indigenous characteristic of a large fraction, if not of the whole of the upper mantle (Palme and O’Neill, 2004). Many bulk rock samples of fertile lherzolites also show enrichment of Pd over Ir when normalized to carbonaceous chondrites or even enstatite chondrites (Pattou et al., 1996; Snow and Schmidt, 1998; Schmidt et al., 2000; Pearson et al., 2004), and has been suggested to be an indigenous characteristic of a large fraction, if not of the whole of the upper mantle (Palme and O’Neill, 2004).
processes are capable of changing the HSE composition of mantle peridotites (Rehkämper et al., 1999; Saal et al., 2001; Büch et al., 2002; Luguet et al., 2003; Pearson et al., 2004), because secondary igneous sulfides could be segregated from the melts into mantle peridotites together with other silicate minerals (Seyler et al., 2001). Suprachondritic Pd/Ir ratios in the PS66-238 samples cannot be attributed only to the addition of silicate melts. As discussed above, addition of large amounts of melt is unlikely in PS66-238 lherzolites because of their low contents of both Na2O and TiO2. The peridotite-melt partition coefficient of Re is lower than that of Pd. If melt refertilization were responsible for Pd enhancement in the lherzolites, Re would be enriched relative to Pd or Pt, which it is not.

By comparison, percolation of sulfide melt would be more efficient than silicate melt in increasing the Pd/Ir ratios of mantle peridotites. Rehkämper et al. (1999) first proposed the addition of secondary sulfides to explain suprachondritic Pd/Ir ratios observed in some mantle peridotites. They implied that the HSE budget of mantle peridotites reflects the physical mixing of both residual and secondary sulfides. In-situ study of base-metal sulfides provides further support to this interpretation. Relative to sulfides enclosed in olivine, interstitial sulfides in mantle peridotites are generally enriched in incompatible PGEs (i.e., Pd and Re) on one hand; and also have suprachondritic 187Os/188Os ratios on the other hand (Alard et al., 2000; Alard et al., 2005). Modeling results showed that addition of 50–100 ppm sulfur in the form of secondary sulfide is enough to account for the suprachondritic Pd/Ir observed in some mantle peridotites (Rehkämper et al., 1999; Luguet et al., 2003).

Some sulfides in Gakkel abyssal peridotites do bear both compositional and textural evidence supporting for their magmatic origin. Chalcopyrite and Cu–Ni-rich sulfides interstitial among silicate minerals have been observed in some samples. Especially, association of some small sulfides with tiny cpx (cpx2) and spinel (sp2) occur in some Gakkel samples (Fig. 1c, f). Such textures have been reported in abyssal peridotites and ophiolitic peridotites, which were commonly attributed to crystallization of magmatic sulfides from small refertilizing melt fractions trapped within the peridotites (Seyler et al., 2001; Luguet et al., 2003; Luguet et al., 2004). Furthermore, sulfur contents of both PS66-238-18 and PS66-238-22 deviate from the positive A12O3–S correlation to higher values, possibly reflecting the late addition of sulfides in these samples. Therefore, at least some Gakkel peridotites have been affected by late addition of magmatic sulfides.

However, suprachondritic Pd/Ir ratios in all PS66-238 lherzolites are unlikely to result from addition of metasomatic sulfides for the following reasons. The first set of reasons is petrographic: the refractory Fe–Ni-rich sulfides (i.e., pentlandite and pyrrhotite) predominate over Cu–Ni-rich sulfides and chalcopyrite in all samples. Even when they occur, the Cu–Ni-rich sulfides are very tiny in size. Sample PS66-238-4 has a suprachondritic Pd/Ir, even though no Cu-rich magmatic sulfide has been discovered in thin section. Secondly, sulfide addition process cannot account for the significantly different Pd/Ir ratios in samples with similar histories of partial melting and melt refertilization. For example, sample PS66-238-2 and PS66-238-39 have been subjected with similar degrees of melt extraction, indicated by the similar Cr# of their spinels (0.2 vs. 0.18). They also contain identical sulfur contents within error (72 vs. 77 ppm). This suggests that similar amount of sulfides were added into these two samples after melt extraction, if this process was occurred in both samples. However, the (Pd/Ir)N value of PS66-238-2 (1.93) is much higher than that of PS66-238-39 (1.43). Thirdly, addition of magmatic sulfides does not explain the S-PGE systematics. We have calculated an excess sulfur content for each sample as the measured sulfur content of the sample minus the theoretical sulfur content residual in the sample after partial melting. Magmatic sulfides have high Pd/Ir ratios compared to mantle rocks, predicting a strong positive correlation of Pd/Ir with added sulfide. In Fig. 7, models are shown assuming Pd/Ir in magmatic sulfides of 2 and 5.3, respectively. Instead of a positive correlation, there is a rough inverse relationship between the Pd/Ir ratio and the excess sulfur content (except for the harzburgite), which essentially contradicts the contention that the suprachondritic Pd/Ir ratios in the Gakkel Ridge lherzolites result from pervasive addition of secondary magmatic sulfides (Fig. 7). The two samples (PS66-238-18 and PS66-238-22) with the maximum excess sulfur contents have the lowest Pd/Ir ratios, and (again with the exception of the harzburgite) all samples with low excess sulfur have high Pd/Ir ratios. Therefore, we conclude that suprachondritic Pd/Ir ratios in Gakkel lherzolites are not due to addition of metasomatic sulfides. Instead, similar to the suprachondritic Ru/Ir ratio, they represent an indigenous signature of the Earth's upper mantle.

The non-chondritic HSE patterns displayed by the fresh PS66-238 lherzolites, i.e., suprachondritic Ru/Ir and Pd/Ir ratios but chondritic Pt/Ir ratio, are similar to those of the PUM. The estimated composition of the PUM were inferred based on samples representative of continental lithospheric mantle, e.g., peridotite masses and mantle xenoliths (Becker et al., 2006). This suggests that the oceanic mantle has a HSE budget similar to that of the continental lithospheric mantle. Meanwhile, unlike some samples previously used for the estimate of the PUM composition, the Gakkel lherzolites have experienced little melt refertilization. Our results thus support the conclusion that the PUM has a non-chondritic HSE budget.

6. Conclusions

Abysal peridotites from the ultra-slow spreading Gakkel Ridge that experienced little melt extraction and late refertilization provide an opportunity to study the behaviors of the HSE during seawater alteration and partial melting, and also provide constraints on the HSE composition of the primitive upper mantle (PUM). Comparison of HSE compositions between fresh, weathered and serpentinized abyssal peridotites suggest that the HSE with the possible exception of Pd and Re are stable during seafloor alteration (i.e., serpentinization and weathering). The lherzolites from Gakkel Ridge have very low contents of both Na2O and TiO2, representing the pristine mantle rather than secondary refertilization mantle. They have consistent HSE patterns with suprachondritic Ru/Ir and Pd/Ir ratios. The
harzburgite has a fractionated HSE pattern with depletion in Pt, Pd and Re. This might reflect the removal of Cu–Ni–rich sulfide from the harzburgite during partial melting, perhaps through a physical draining process. The suprachondritic Pt/Re ratios of the PS66-238 lherzolites are not due to the addition of metasomatic sulfides, although these have been discovered in some samples. Therefore, both the suprachondritic Pd/Re ratio and the suprachondritic Ru/Re ratio are indigenous characteristics of the upper mantle. Our conclusion is consistent with the HSE composition of the PUM estimated based on the HSE concentrations in rocks from the continental lithospheric mantle.

Acknowledgements

We thank the Captain and crew of PFS Polarstern expedition ARK XX/2 and the other participants in the AMORE 2001 expedition. This work overall was supported by the Max-Planck Institute for Chemistry and the Deutsche Forschungsgemeinschaft to J.E.S. We are indebted to Annette von der Handt, Zoran Jovanovic and Yong-Jun Gao for their help with the sample preparation and experiments. K. Zentel and J. Krause are thanked for their help in HSE and Os isotopes experiments, and Reinhard Haubold for the manuscript and R. Carlson for the editorial handling.

References

