2004年7月11日西藏Mw 6.2级地震
震源破裂过程研究

李娟，王卫民，赵连锋，姚振兴
中国科学院地质与地球物理研究所，北京 100029

摘要 基于有限断层模型，利用远场体波波形数据研究了2004年7月11日西藏Mw 6.2级地震的震源破裂过程。结果表明该地震是一个以倾斜为主的浅源正断层型地震，震源深度为12.5km，断层面走向152°，倾角44°，平均倾滑角-117°。破裂在震中处成核，然后以2.8km/s的平均速度向两侧传播，在震中以东偏北5km处达到最大滑动43cm。

该地震主张力轴近E-W方向，受浅部NNW-SSE或N-S向裂谷带控制，青藏高原南部的逆冲运动是引发这次地震的直接原因。

关键词 有限断层模型，震源破裂过程，模拟退火反演


Rupture process of the July 11, 2004, Tibet (Mw 6.2) earthquake

LI Juan, WANG Wei-Min, ZHAO Lian-Feng, YAO Zhen-Xing
Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China

Abstract The source rupture process of the July 11, 2004, Tibet (Mw 6.2) earthquake is investigated by a finite fault model using far field broadband body wave records. The results show that it is a shallow dip-slipping predominant normal-fault earthquake, and the hypocentral depth is about 12.5km. The fault plane has a strike of 152° and a dip of 44°, and the average slip angle is -117°. The rupture nucleates near the hypocenter, then propagates to the two ends of the fault with an average velocity of 2.8 km/s, and the slip reaches to its maximum value of 43cm at about 5km northeast of the epicenter. The main principal T axis of the fault plane solution shows roughly EW extension, which is controlled by a local rift belt in NNW-SSE or nearly NS direction, and the thrust motion of the southern Tibetan plateau towards north is the main mechanical reason of this earthquake.

Keywords Finite fault model, Source rupture process, Simulated-annealing inversion

1 引言

对中强地震发生过程中破裂滑动时空分布的描述是认识该地震发生的动力学过程以及了解地震发生机理的重要途径之一。由于中强地震的时空复杂性，用单一或几个简单点源的叠加来描述地震震源破裂过程已远远不够。近20年来，发展了一种有限地震断层模型(Finite-fault model)用以描述地震震源的破裂过程[1]。有限断层模型就是在充分考虑断层

基金项目 国家自然科学基金项目(40404004)和(40374016)联合资助。
作者简介 李娟，女，1975年生，1997年毕业于中国科学技术大学，2003年在中国地震局地震研究所获博士学位，主要从事地震学研究。E-mail: juanli@mail.igcas.ac.cn
几何空间展布的情况下，把通常视作点源的地震断层面上离散为多个子断层面元的叠加，通过波形反演来研究每个子断层面的滑动方向、滑动大小、破裂上升时间以及破裂的传播速度等参数，重建震源过程细节。史晨等利用有限断层模型对国内外多次地震震源过程进行了详细研究。Antolik et al.利用远震波形记录反演了2001年印度古吉拉特邦7.6级地震的震源过程，并以此为基础利用有限断层模板预测了震源区的地面运动分布，与震后考察获得的烈度分布图吻合很好。Dreger和Kavara将利用宽频带位移波形数据研究了1999年Hector Mine地震断层面上的滑动分布，并预测了断层附近区域的峰值速度分布等。这些研究都表明远场地震波形的变化主要取决于地震震源的性质，因此对于缺乏近场记录的中强地震，单独使用远场宽频带数字地震记录，用波形反演方法也可以获取地震破裂过程的详细情况。

2004年7月11日23时，在西藏与尼泊尔交界处发生了1次M6.2级地震（震中位置：30°59.7”N, 83°68.5”E）。该地震发生在青藏高原南部雅鲁藏布江缝合带以北的拉萨拉布，通常认为，喜马拉雅和欧亚大陆南部连续性碰撞导致了青藏高原的隆升。青藏高原南缘的逆冲运动，使高原在南北方向受到挤压，地壳增厚。近年来，对高原内部存在大量的拉张运动和走滑运动的地质研究使得有关西藏高原南北向裂谷及西藏地壳所受到的拉张作用更为引人关注。拉萨块体内部存在一个向东 NNE—SSW到NS的裂谷带，从喜马拉雅延伸到拉萨南区。在活跃的亚东—定结—日喀则之间的，分布有大量正断层型中强地震，形成了块体西部的一条北西向正断层带。这次地震就发生在这一条北西向的断层带上。在喜马拉雅—青藏高原造山带的各类地质和地球物理调查中，对震源特性及其深度分布的研究可以为青藏高原岩石圈的力学特性及应力分布提供重要信息。因此，该地震发生后，我们从Internet网上获取了GSN台网远场数字化宽频带波形资料，利用远场体波波形资料，用有限断层模型反演了该地震的震源破裂时空过程、深度以及应力方向等特性，并尝试对此次地震的发震机理给予合理的解释。

\[ f(t) = I(t) \ast A(t') \ast W(t), \]

其中，\( f(t) \)为地震台站的记录，\( I(t) \)为地震仪器的脉冲响应，\( W(t) \)为剪切位错点源产生的位移场，\( A(t') \)为地球介质吸收因子，是 \( t' \)的函数，其中 \( t' = 1/Q \)。\( Q \)为品质因子，远场情况下，\( t' \)可视为常数。本文将P波的 \( t' \)取作1.023。对于有限断层模型，每个断层面上断元都可作为点源处理。若沿断层走向及其垂直方向将断层划分成与地表层上沿断层面上断元的平均位移振幅、滑动方向和上升时间；\( V_a \)是破裂从震中传播到第 \( j \)个断层面元的平均速度；\( u_a, \lambda, \phi_a(t) \)分别为断层面元的平均位移振幅、滑动方向和上升时间；\( V_a \)是破裂从震中传播到第 \( j \)个断层面元的平均速度；\( V_a(t) \)和\( V_a(t) \)为沿断层走向和垂直方向上断层面元单位滑动量引起的格林函数，是破裂传播平均速度和断层面元的函数，可以用广义射线理论、反射率等方法计算生成。作为一点源，每个子断层面上断元处的响应的时间滞后用震中与该点源之间距离与平均破裂速度的比值计算。采用的面元数取决于断层面上断元的划分以及研究中可能辨别的最大频率。

### 3 数据和方法

地震发生之后，我们从IRIS网站上获取了58个震中距离介于30°～90°的GDSN远场波形资料。为保证台站方位角覆盖均匀，从中挑选出22个不同方位角的信噪比高的地震波形数据参与理论地震图的生成和波形反演过程。图1给出了22个台站的地理位置分布。

我们采用广义射线理论计算生成远场理论地震波形数据。每个子断层震源参数的反演则利用基于全局化反演的快速模拟退火反演方法。近年来，模拟退火反演算法被成功地用于研究天然地震震源的破裂等多种非线性问题的反演中（文献[5,6]）。

有限断层反演需要寻找与目标函数最小的断层参数，这里，我们采用了高斯-自拟合的相关误差函数作为待反演的目标函数（文献[4,5]），如下所示。
该地震是一次以倾滑为主的浅源地震，其中，由NEIC提供的震源参数和哈佛快速CMT解比较接近，但震源深度相差较大，分别为8km和17.1km。

远场地震波形对震源深度十分敏感。由于不同台网测定的震源深度相差较大，为准确限定震源深度范围，我们在对地震波形做了较为细致的分析。由这次地震的宽频带P波波形资料可以看出，在直达P波之后7～8s左右，各台站记录中都有一个大振幅的震相出现，并随方位角的变化而变化。对于远场P波而言，起主要贡献的有三组波：P，pP和sP波，其中，P为远场直达波，pP和sP波为在自由表面的反射/转换波。若该地震可视为一次简单的破裂事件，则记录图中较大振幅对应的震相响应为sP波。图2给出了用广义射线理论计算得到的不同深度剪切点源破裂产生的三组基本断层：45°倾滑（45DS）、倾滑（DS）和走滑（SS）断层的位移响应曲线。为简单起见，将震源层上下时间取为0.4s的三角形时间函数。图中从上到下震源的深度由5km增加到25km。随深度的逐渐变化，三组基本断层的响应也相应呈现出明显变化，尤其表现在P-P和sP-P这两组波到时差上。当震源深度达到25km时，sP-P波到时差已接近1.5s。因此，通过对记录波形的分析，可以判断该地震震源深度较浅，大约在13km左右，介于NEIC和Harvard CMT快速定出的震源深度之间，而中国地震台网（CCGDSN）初步给出的震源深度25.4km并不准确。

为了同时获取震源破裂过程的总体及其细节特征，我们将反演过程分为三步进行。首先，根据地震波能量大小与断层尺度的关系，将断层初步划分为16×8个4km×4km大小的子面元，由于深度无法用CCDSN台网准确测定，我们以2.5km为变化步长对5～25km范围内的深度空间进行了扫描。图3给出了不同深度情况下，用4km×4km大小有限断层模型反演得到的目标函数值。可以看出，目标函数值

4 断层模型

表1给出了由NEIC，Harvard快速CMT和中国地震台网（CCDSN）给出的速报震源机制解。从中可以看出，三组震源参数不完全一致，但总体上都表明

<table>
<thead>
<tr>
<th>表1 2004年7月11日西藏Ms 6.2地震震源参数</th>
</tr>
</thead>
<tbody>
<tr>
<td>节平面</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>I</td>
</tr>
<tr>
<td>II</td>
</tr>
<tr>
<td>I</td>
</tr>
<tr>
<td>II</td>
</tr>
</tbody>
</table>
随震源深度的不同呈现出相应的变化．在深度为12.5km时，目标函数达到极小值，这与以上通过sP-P波时差的定性分析完全一致．

然后，在确定震源深度的基础上，我们又对断层走向在135°～175°，倾角在30°～50°内变化的震源机制解空间进行了搜索．图4给出了相应于不同断层走向和倾角的有限断层模型反演得到的误差函数等值线图．可以看出，在深度、倾角给定时，误差函数在0.45附近变化，远小于前面由于深度变化造成的较大误差值．当走向和倾角分别为152°, 44°时，误差函数达到极小值，与 Harvard CMT 震源机制解十分接近．

第三步，将每个初步划分的断层面元重新细化，得到由32×16个2km×2km大小子面元构成的有限断层模型，随后的模拟退火反演过程中，采用152°/44°/117°作为震源机制解，震源深度固定在12.5km不变．

在整个有限断层反演过程中，每个子断层的走向、倾角固定不变．每个点源的错动距离、滑动角速度、破裂上升时间及破裂传播的平均速度(V)作为待反演的4组变量．其中，破裂滑动方向在−117±30°范围内变化；震中到各点源的平均破裂速度介于2.2～3.5km/s之间；将上升时间选取为0.4s为间隔步长，0.4～4.0s范围内变化的三角形震源时间函数；归一化的滑动大小在0～1之间变化．整个反演过程从完全随机的模型开始．

5 反演结果

图5对比了观测记录和由反演后的有限断层滑
图 5 反演得到的理论地震图（细实线）和观测资料（粗实线）的对比（H = 12.5 km）

Fig. 5 Comparison of the observed records and the synthetic waveforms (H = 12.5 km)

动分布计算生成的理论地震图，其中粗实线代表实际观测记录，细实线为理论图，左上角列出了各台站名称，并给出了各观测台站的方位角 $A_z$ 和震中距离 $A$，右上角数字为记录与理论地震图最大振幅的比值，可以看出，在深度为 12.5 km 的前提下，理论地震图和观测资料在 P 波初至 30 s 左右的时间范围内吻合较好。

图 6 是由 22 个宽频带 P 波波形反演得到的断层面上最终滑动分布图，x 和 y 分别指向断层面的走向和倾向方向。图 6a 为断层面上的滑动距离；图 6b 给出了滑动角度的分布；图 6c 为破裂开始时间。可以看出，这是一种以滑动为主的地震，地震破裂过程相对较为简单。破裂在震中成核，向两侧不均匀传播。在震中偏右约 5 km 处，出现幅度 43 cm 的最大的滑动，由断层面上滑动的分布计算出的标量地震矩 $M_0 = 3.25 \times 10^{18}$ N·m，大于 Harvard CMT 快速震源机制解给出的标量地震矩，这可能是由以下两个原因造成的：点源模型考虑的仅是震源破裂过程中主要部分的贡献，而有限断层模型考虑了断层面上所有破裂对总的标量地震矩的贡献；地震定位深度之间的差异。在最初 5 s 内，破裂振幅较大，释放的地震矩占总释放能量的 59%。随着破裂时间的增加，破裂前沿从近似的圆形变得更为不规则。整个破裂过程的破裂速度平均值为 2.8 km/s，在前 4.0 s 中破裂速度较快，为 3.1 km/s，之后逐渐降低至 2.2 km/s。在前 4.0 s 范围内，错动方向一致性较好，随着破裂的传播，沿走向方向的破裂成分逐渐增多。断层面上错动方向的平均值为 -117°，表明这是一次正断层为主的事件，略带右旋走滑分量。图 7 用色标给出了断层面上滑动分布随时间的变化过程，前后两幅“快照”的时间间隔为 2 s，从图中可以看出破裂随时间发展演变的过程，破裂过程主要在前 12 s 内完成。

反演中，我们还对不同尺度划分的（如 16 × 4 个
图 6 有限断层模型破裂滑动分布
(a) 断层面上滑动大小分布 (单位: cm); (b) 侧滑角分布; (c) 破裂开始时间 (单位: s) 分布。
Fig. 6 Slip distribution along the fault plane
(a) Distribution of the magnitude of slip on the fault; (b) Distribution of slip direction;
(c) Distribution of the onset time of the rupture.

图 7 断层面上破裂滑动强度分布随时间的变化过程
$D$ 代表断层面上位错的大小, 相邻两幅“快照”的时间间隔为 2s。
Fig. 7 “Snapshot” of the slip distribution along the fault plane
$D$ represents the amplitude of slip on the fault, and the time interval between the following two shots is 2s.

$4 \times 4 \text{km}$ 有限断层模型进行了反演, 在两种情况下得到结果是稳定的。
下断层面上错动的空间分布形态基本一致, 表明所
6 结论与讨论

这次地震发生在西藏西南部，研究表明，南北向的断裂带之间发生了北西向的正断层。根据国家数字地震台网提供的地震目录，1978 年 5 月 10 日，位于震中附近的地震，震源深度为 12.5km，破坏面走向为 152°，倾角 44°，平均倾向角为 117°，震中矩为 3.25 × 10^8 N·m。断层破裂面积约为 50km × 22km，震源破裂过程相对简单。此次地震震中位于北纬 30°，东经 90°，最大破坏区域为 43cm，在震中北 5km 处，破裂持续时间约 12s，地震发生前几分钟内破裂释放的能量占总释放能量的 59%。断层面上微小的右旋走滑错动分量表明这次事件受到了北北东向的右旋喀喇昆仑断裂带影响。地震的主脉力在 E-W 方向，主压力轴近 NS 向，与发生在西藏康北的数次正断层型地震相同，受中部 NNE-SSW 或 NS 向裂谷带控制，而藏青高原南部的逆冲断层运动是引发这次地震的直接原因。

Zhao et al. [12] 以及郑新华 [13] 用大型周期体波深度震相波形资料对青藏高原内部地震深度的重新定位研究认为，大部分强震的深度都比常规法确定的深度要浅，其震源深度大都在 20km 以内，小于 12km。比较 CCDSS 和 Harvard CMT 提供的深度信息，我们对该次地震破裂的反演结果也支持了这个结论。

由波形拟合图中可以看出，理论地震图中对较晚到达的高频波拟合欠佳。这主要是由于我们仅采用了较易获得的高场体波波形资料提供的信息，如果有高场宽频带资料 [14, 15, 16]，甚至一些大地动力学观测资料，如 GPS [5, 10] 数据的加人进行长周期、短周期以及 GPS 观测的联合反演，那么对震源破裂的时空描述将会更细致准确，分辨率必将大大提高。

参考文献 (References)


