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Lithium isotope geochemistry is increasingly being used to trace deep-earth processes,
reflecting the observed large variation of Li isotope ratios in mantle-derived rocks,
including peridotite xenoliths associated with ancient continents. We briefly review the
Li isotopic compositions of major geochemical reservoirs, the assumed mechanisms of
Li isotopic fractionation, and, in particular, the origins of isotopically light Li in mantle-
derived rocks based on the latest developments in Li isotope geochemistry. Comparison
of Li isotope data with existing Sr-Nd isotope ratios reflects the subduction-recycling
of ancient oceanic crust and the reappearance of Li in volcanic rocks. This circulation
may play an important role in generating the isotopically light-Li component in the
mantle – perhaps the enriched mantle end member defined by the Sr-Nd isotopic
compositions of oceanic basalts.

Keywords: lithium; isotope geochemistry; fractionation mechanisms; peridotite
xenoliths; review of Li isotopic evolution

Introduction
Li isotope geochemistry has developed rapidly in recent years (Ushikubo et al. 2008;
Vigier et al. 2008; Chan et al. 2009; Richter et al. 2009) because Li has many favourable
characteristics as a geochemical tracer (Tomascak 2004; Tang et al. 2007b). Inasmuch as
Li is a mildly incompatible element with Dsolid/melt values between 0.1 and 0.5 for most
mantle minerals (Ryan and Langmuir 1987; Brenan et al. 1998a; Seitz and Woodland
2000; Ottolini et al. 2009), it can be concentrated in crust materials compared to the
mantle. In addition, Li is highly mobile and tends to partition preferentially into fluid
phase in the processes of near-surface weathering, sea-floor alteration, and subduction-
zone metamorphism (Seyfried et al. 1984; You et al. 1996; Brenan et al. 1998b); thus Li
can be strongly enriched in the oceanic crust by seawater alteration and then released in
the subduction zone.

The main reason that the Li isotope system is a powerful tracer reflects the large
relative mass difference between 6Li and 7Li, which favours the great range of d7Li [Li
isotopic composition relative to the L-SVEC (lithium carbonate prepared by H. Svec; Flesch
et al. 1973) standard supplied by the National Institute of Standards and Technology: [(7Li/
6Li)sample/(

7Li/6Li)L-SVEC-1]×1000], from −34 to +50‰ in terrestrial samples (Hoefs and
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Sywall 1997; Košler et al. 2001; Tomascak 2004; Zhang et al., personal communication).
The fractionation of Li isotopes appears to be especially strong in low-temperature sys-
tems and highly variable in altered oceanic crust (Chan and Edmond 1988; Chan et al.
1994), hydrated mantle rocks (Decitre et al. 2002; Agostini et al. 2008), and eclogitic
slabs (Zack et al. 2003; Marschall et al. 2007). In contrast, extremely small fractionation
at higher temperatures (>350°C) has been recognized (Chan et al. 1994; Tomascak et al.
1999b; Chan and Frey 2003; Wunder et al. 2006) and thus Li isotopic fractionation is neg-
ligible in magmatic processes, implying that lavas have the potential of recording the iso-
topic compositions of their sources (Moriguti et al. 2004; Elliott et al. 2006; Agostini et al.
2008; Chan et al. 2009; Košler et al. 2009).

Mechanisms producing large fractionations of Li isotopes and origins of the extremely
low d7Li observed in mantle-derived rocks are still poorly understood despite major
advances in the study of Li isotope geochemistry. In this article we briefly review the latest
developments in this field and the assumed mechanisms of Li isotopic fractionation. Our
main purpose is to more fully constrain the origins of low d7Li in mantle-derived rocks and
their implications for crust/mantle recycling by comparison of Li isotopic results with
existing Sr-Nd isotopic evidence.

Li isotopic compositions of major reservoirs
A rapidly growing database allows us to put new constraints on the Li isotopic composi-
tions of major geochemical reservoirs, most of which were summarized previously
(Tomascak 2004; Tang et al. 2007b). The variable ranges of d7Li in major reservoirs are
shown in Figure 1. Seawater has a relatively homogeneous Li isotopic composition and is
isotopically quite heavy, with an average of d7Li ∼ +32‰, while marine biogenic carbon-
ates, marine pore water, and marine sediments show wide ranges of d7Li. Marine biogenic
carbonates have the highest d7Li of +50‰ among the reservoirs (Košler et al. 2001).

Another relatively homogeneous reservoir is the normal mantle, represented by fresh
mid-ocean ridge basalts (MORB), with d7Li of +1 to +6‰ (Figure 1). However, the mantle
is actually heterogeneous as reflected by the variable Li isotopic compositions of oceanic
island basalts (OIB) with d7Li of about +2 to +11‰ and mantle-derived peridotites showing
a large d7Li range, from +13 to −34‰ (Zhang et al., personal communication).

The upper continental crust is isotopically lighter than the normal mantle, with an
average of d7Li ∼ 0‰ (Teng et al. 2004), which is inferred to reflect the influence of
weathering, with heavy Li partitioned into surface waters, leaving light Li in the weath-
ered residua. This inference is supported by the high d7Li values of river waters (Huh et al.
1998, 2001) and ground waters (Hogan and Blum 2003), as well as the experimental data
(Pistiner and Henderson 2003). Most altered oceanic basalts and marine sediments display
d7Li intermediate between that of the mantle and seawater, due to the uptake of heavier
seawater Li.

Orogenic eclogites, with the lowest d7Li of −35‰ (Cheng et al. personal communica-
tion), are isotopically lighter than the upper crust, reflecting loss of heavy Li during meta-
morphic dehydration of subducting slab (Zack et al. 2003; Wunder et al. 2007; Agostini et
al. 2008) and/or diffusive influx of Li into the eclogites from the country rocks during
exhumation (Marschall et al. 2007).

As illustrated in Figure 2, surface weathering produces the high d7Li of river waters
that feed the oceans. Low-temperature alteration of oceanic crust then makes seawater
heavier than river water. Li isotopic fractionation during the dehydration of altered
oceanic crust could produce isotopically heavy-Li fluids and light-Li slab residue, which
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metasomatized the overlying mantle wedge, and thus the arc lavas derived from the
mantle wedge show considerable variation of d7Li, from +12 to −6‰.

Li isotopic fractionation mechanisms
Differential partitioning of 7Li and 6Li between solid and aqueous phases is the principal
mechanism invoked to explain the Li isotopic variations in major near-surface reservoirs
because 7Li is preferentially partitioned into the fluid while 6Li is incorporated into the
solid (Taylor and Urey 1938; Chan et al. 1999, 2002b; Yamaji et al. 2001; Wunder et al.
2006). Since a large fractionation can occur at low temperatures while absent at high
temperatures, temperature should be a key factor of Li isotopic fractionation (Seyfried
et al. 1998; Tomascak et al. 1999b; Coogan et al. 2005).

Li isotope compositions of mantle material may be affected by diffusion processes due
to the exceptionally high diffusivity of Li (Nakamura and Kushiro 1998; Coogan et al.
2005) and faster diffusion of 6Li than 7Li (Richter et al. 2003). Thus high-temperature
diffusive fractionation has been invoked to account for striking d7Li variation in country

Figure 1. Li isotopic compositions of major geochemical reservoirs. Data sources: chondrites
(McDonough and Sun 1995; Tomascak 2004; Magna et al. 2006; Seitz et al. 2006, 2007), seawater
(Chan and Edmond 1988; You and Chan 1996; Moriguti and Nakamura 1998; Tomascak et al.
1999a; James and Palmer 2000; Rudnick et al. 2004b; Tomascak 2004), river waters (Huh et al.
1998, 2001), high-temperature vent fluids (Chan et al. 1993; Foustoukos et al. 2004; Kisakürek et
al. 2004), arc lavas (Moriguti and Nakamura 1998; Tomascak et al. 2000, 2002; Chan et al. 2002a,
2002b; Agostini et al. 2008; Košler et al. 2009), OIB (Tomascak et al. 1999b; Chan and Frey 2003;
Ryan and Kyle 2004; Chan et al. 2009; Schuessler et al. 2009), fresh MORB (Chan et al. 1992,
2002a, 2002b; Moriguti and Nakamura 1998; Tomascak and Langmuir 1999; Elliott et al. 2006;
Nishio et al. 2007; Tomascak et al. 2008), altered MORB (Chan et al. 1992, 2002a), marine
sediments (Chan et al. 1994, 2006; Zhang et al. 1998; James et al. 1999; Chan and Kastner 2000;
Bouman et al. 2004), loess, shales, and upper continental crust (Teng et al. 2004), Eclogite data
(Zack et al. 2003; Marschall et al. 2007; Cheng et al. personal communication), peridotite and
pyroxenite xenoliths (Tomascak 2004; Tang et al. 2007b; Zhang et al., personal communication),
granites (Tomascak 2004; Teng et al. 2009), other reservoirs (Tomascak 2004).
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rocks of pegmatite (Teng et al. 2006), within individual phenocrysts (Beck et al. 2006;
Parkinson et al. 2007), and intra-granular, inter-granular, and inter-sample scales in man-
tle-derived xenoliths (Lundstrom et al. 2005; Jeffcoate et al. 2007; Rudnick and Ionov
2007; Tang et al. 2007a; Ionov and Seitz 2008; Kaliwoda et al. 2008; Magna et al. 2008;
Aulbach and Rudnick 2009).

One recent study proposed that Li isotopic zoning can occur as a natural result of
cooling magmatic systems based on parameterizations of the temperature dependence of
Li partitioning and diffusivity in clinopyroxene (cpx) (Gallagher and Elliott 2009). This
calculation model can produce an asymmetric isotope profile similar to those documented
in some olivine and cpx phenocrysts with isotopically normal cores but light rims; hence
temperature dependence of diffusivity and partition coefficient of Li isotopes are consid-
ered as key factors in producing the diffusion profile (Gallagher and Elliott 2009). This
conclusion supports the speculation that significant d7Li variations in lava-hosted peridot-
ite xenoliths may be related to different cooling times for thicker and thinner flows (Ionov
and Seitz 2008).

In brief, differential partitioning of 7Li and 6Li between solid and aqueous phases is
the primary mechanism for Li isotopic fractionation in major near-surface reservoirs, and
diffusive fractionation of Li isotopes is very prevalent in deep-seated rocks (such as
eclogites, pegmatites, granites, granulite and peridotite xenoliths), which could be
strongly affected by temperature.

Origins of low d7Li in mantle-derived rocks
As mentioned above, diffusion-driven isotopic fractionation has been accepted as an
important mechanism for extremely large variation of d7Li in mantle peridotites (Richter
et al. 2009). However, the boundary conditions for the diffusion processes, such as cool-
ing of magmatic systems (Beck et al. 2006; Ionov and Seitz 2008; Kaliwoda et al. 2008;
Gallagher and Elliott 2009), alkali diffusion and melt extraction (Lundstrom et al. 2005),

Figure 2. Schematic illustration of Li isotopic systematics in different settings, modified from
Zack et al. (2003), Elliott et al. (2004), and Tang et al. (2007b). The numbers in the figure represent
the d7Li values. Weathering of continental rocks results in the heavy Li isotopic compositions of
river water which feeds the oceans. Low-temperature alteration of oceanic crust then makes seawa-
ter heavier than river water. High d7Li in decollement fluids and serpentinite diapirs indicate Li iso-
topic fractionation during dehydration of altered oceanic crust. The high d7Li of fluids escaping the
slab at low temperatures likely enrich the overlying mantle wedge in 7Li, which may be the source
of arc lavas. Thus, variable d7Li in arc lavas might be explained by incorporation of the mantle
wedge. Data sources are the same as those identified in Figure 1.
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melting of peridotites promoted by metasomatism (Magna et al. 2008), interactions of
xenoliths with host rocks (Jeffcoate et al. 2007; Parkinson et al. 2007; Rudnick and Ionov
2007), asthenospheric melt (Aulbach et al. 2008; Aulbach and Rudnick 2009), and/or
recycled crustal melt (Nishio et al. 2004; Tang et al. 2007a), are currently disputed.
Among these controversies, Li isotopic composition of recycled, dehydrated oceanic slab
is a hot topic.

Progressive metamorphic dehydration of a highly altered oceanic crust (basaltic
protoliths) during its subduction, with concomitant loss of heavy Li into expelled aqueous
fluids, could produce low d7Li in the slab residual by an approximate process of Rayleigh
distillation, which is documented for exhumed orogenic eclogites from Trescolmen,
Switzerland, whose d7Li ranges from −11 to +5‰ (Zack et al. 2003). This scenario is
modelled for Li in cpx according to experiments involving Li isotopic fractionation
between cpx and Cl- and OH-bearing aqueous fluids between 500 and 900°C at 2.0 GPa
(Wunder et al. 2006), which is further supported by the observation that continuous
dehydration of altered oceanic crust could produce fluids enriched in Li and 7Li and rock
residual with low d7Li based on the experiments of Li isotope fractionation between
synthetic Li-staurolite and aqueous fluids containing excess LiCl or LiOH at 3.5 GPa and
670 to 880°C and between Li-mica and similar fluids at 2.0 GPa and 300–500°C (Wunder
et al. 2007).

However, Marschall et al. (2007) proposed a contrary prediction that the entire
prograde metamorphic process, up to anhydrous eclogite, can account for a decrease in
d7Li of only ≤3‰ in subducting oceanic crust during dehydration based on modelling
calculations. They ascribed the low d7Li of eclogites (as low as −21.9‰) to kinetic
fractionation of the Li isotopes during diffusive influx of Li from the country rocks into
the exhuming eclogites and thus they predicted the deeply subducted eclogites to have a Li
isotopic signature heavier than the mantle. This inference is likely supported by the heavy
d7Li values (up to 6.2‰) in olivine from the high μ (HIMU: μ = 238U/204Pb) lavas from
the Cook-Austral volcanic chain, indicating that the source for the HIMU lavas contains
dehydrated recycled oceanic crust whose ‘heavy’ Li-isotope signature is partially
preserved during passage to the mantle through the subduction factory (Chan et al. 2009).

Based on the Li, B, Sr, and Nd isotope variations in the lavas spanning approximately
10 Ma of subduction-related volcanism in western Anatolia, Agostini et al. (2008) suggest
that the presumptions of Marschall et al. (2007) may be not valid in a case where subduction is
stopping and a nearly ‘hung’ downgoing slab is being comprehensively devolatilized and that
solid–fluid exchanges of Li as subduction slows could lower the d7Li of the slab more
extensively at shallow depths than is observed in normal arc settings. Thus, the very dehy-
drated slab will have a lower d7Li than could develop during active subduction. High-
temperature, Li-rich outfluxes from the slab at depth will perverse this lighter d7Li signa-
ture (Agostini et al. 2008). This study may provide a necessary complement to the above
models and shed light on the origins of low d7Li in mantle-derived rocks.

Recently, we observe a rough trend between the d7Li and Sr-Nd isotopic ratios of cpx
in peridotite xenoliths from the Hannuoba and Fanshi Cenozoic basalts on the North
China Craton. The d7Li values increase with the increase of 143Nd/144Nd and the decrease
of 87Sr/86Sr ratios for most samples (Figure 3). In one word, the d7Li values increase with
the depletion of Sr-Nd isotopic compositions in the peridotites, showing a mixing trend
between the depleted mantle (DM) and enriched mantle (EM1). Some samples are plotted
below the mixing fields due to their low d7Li relative to a certain Sr or Nd isotope ratio,
which may be the consequence of recent ingress of Li from infiltrated melt into the perido-
tites. Similarly, the cpx data from Nishio et al. (2004) also show a DM–EM1 mixing
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trend, while the Labait peridotites from Tanzania may reflect a signature of isotopically
heavy Li of HIMU (Aulbach et al. 2008).

Large variations of Sr-Nd isotopic ratios of cpx (Figure 4) – coupled with the petrology,
mineralogy, and elemental and Re-Os isotopic geochemistry previously documented for
peridotite xenoliths from the Fanshi (Tang et al. 2008; Xu et al. 2008) and two adjacent
localities, Hannuoba (Song and Frey 1989; Tatsumoto et al. 1992; Fan et al. 2000;
Rudnick et al. 2004a; Zhang et al. 2009) and Yangyuan (Ma and Xu 2006; Xu et al. 2008)
– indicate that the lithospheric mantle beneath the North China Craton could have been
previously modified by recycled materials that changed the Rb/Sr and Sm/Nd ratios in the
old lithosphere, and then the modified lithosphere experienced a secular evolution.
Furthermore, relatively depleted Sr-Nd isotopic compositions in some peridotites could be
the products of recent asthenospheric melt-peridotite reaction (Tang et al. 2008; Zhang
et al. 2009). Since the asthenosphere is depleted in Sr-Nd isotopic compositions, the
reaction products should be depleted in Sr-Nd isotopic compositions relative to their earl-
ier counterparts (old lithospheric mantle) with evolved Sr-Nd isotopic ratios. Thus, the
Sr-Nd isotope compositions of cpx from the peridotites (Figure 4) provide clear evidence
for the DM–EM1 mixing.

Figure 5 shows the Li element and isotope data published recently and illustrates the
behaviours of Li isotopes during the processes of fluids/melt-rock interactions. The
normal mantle has d7Li range similar to that of fresh MORB. Low-temperature alteration

Figure 3. Sr and Nd isotope ratios against d7Li in cpx from peridotite xenoliths. The grey fields
represent the assumed mixing of DM and EM1. The cpx plotted below the mixing fields are low in
d7Li due to recent Li ingress. Some samples from the Labait, Tanzania, have high d7Li, possibly
indicating the isotopically heavy Li of HIMU (Aulbach et al. 2008). Data sources: d7Li for DM
(Chan et al. 1992, 2002a; Moriguti and Nakamura 1998; Elliott et al. 2006; Nishio et al. 2007;
Tomascak et al. 2008); for HIMU estimated from Nishio et al. (2004, 2005), Aulbach et al. (2008)
and Chan et al. (2009); and for EM1 estimated from Nishio et al. (2004), Wunder et al. (2006),
Tang et al. (2007a), Agostini et al. (2008), Košler et al. (2009) and Tang et al. (2009). Sr and Nd
isotope data sources: Fanshi (Fan et al. 2000; Tang et al. 2008; Xu et al. 2008; Tang et al. unpub-
lished data), Hannuoba (Song and Frey 1989; Tatsumoto et al. 1992; Fan et al. 2000; Rudnick et
al. 2004a; Tang et al. unpublished data), Yangyuan (Ma and Xu 2006; Xu et al. 2008), DM, HIMU
and EM1 end members (Zindler and Hart 1986); other data: (Nishio et al. 2004; Aulbach et al.
2008).
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can increase the Li contents and d7Li in altered MORB (Chan et al. 1992, 2002a), while
dehydration metamorphism can produce isotopically complementary heavy-Li fluids and
light-Li slab residue, which hydrated the overlying mantle wedge, and thus arc lavas
derived from the mantle wedge show variable d7Li. Meanwhile, the low d7Li in the slab
residue could be further lowered (down to −10‰ or even lower?) by means of solid–fluid
exchanges of Li (Agostini et al. 2008) and then be preserved in the mantle to form the
EM1. Peridotite will acquire a low-d7Li signature if initially metasomatized by a low-d7Li
agent from the EM1. Later interaction between the lower-d7Li peridotite and higher-d7Li
asthenospheric melt will elevate the bulk d7Li of peridotite. This inference is consistent
with the linear correlation between the bulk d7Li and 1/Li for these peridotites (Figure 5),
showing a DM–EM1 mixing trend. Some peridotites and their constituent minerals are
plotted below the mixing field due to their decreased d7Li as a result of recent Li ingress.

Altogether, we believe in the presence of low d7Li component in the mantle, which
may form the EM1 end member according to the correlation between d7Li and Sr-Nd
isotopic compositions in the peridotites (Figure 3) and the growing data of low d7Li in
deep slab and mantle-derived rocks (Zack et al. 2003; Benton et al. 2004; Nishio et al.
2004, 2005, 2007; Nishio et al. 2007a; Agostini et al. 2008).

Implications for crust/mantle recycling
Since recycled crustal materials have evolved Sr-Nd isotopic ratios, interaction of a
normal mantle peridotite with the recycled materials could lead to the enrichment of
Sr-Nd isotopic composition in peridotite. However, such a case is highly complicated in
terms of Li isotopic system due to the great variability of d7Li in recycled crust materials.
It has been proposed that d7Li variation is closely related to the mineral composition
(Wunder et al. 2007) and physical state (Marschall et al. 2007; Agostini et al. 2008) of the
subducted slab. For example, mantle modified by subducted material will have negative
d7Li values if the major mineralogical Li reservoirs in the subducted slab have octahedral
coordination of Li (such as micas and pyroxenes), as opposed to positive d7Li values if Li

Figure 4. Sr and Nd isotopic compositions in cpx from peridotite xenoliths. The grey field represents
the mixing between DM and EM1. Data sources are the same as those in Figure 3.
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in the slab is tetrahedrally coordinated (such as staurolite). Besides, the behaviour of
minerals might also have some influence on the isotopic fractionation (Wunder et al.
2007). Therefore, recycling of crustal materials could produce different components in the
mantle: (1) 7Li-enriched fluids, which hydrated and elevated the d7Li of mantle wedge; (2)
isotopically light-Li slab residue, which possibly formed the EM1 member; and (3) isotop-
ically heavy-Li components under certain circumstances, which might contribute high
d7Li to the HIMU member.

Conclusions
Lithium isotope geochemistry has developed very rapidly in recent years and been used to
trace many geological processes related to fluids/melts. The large variations of d7Li
observed in newly studied OIB, MORB, granites, eclogites, arc lavas, lower crust-derived
granulite, and mantle-derived peridotite xenoliths further enrich the database of major
geochemical reservoirs.

Differential partitioning of 7Li and 6Li between solid and aqueous phases is the
principal mechanism for the Li isotopic fractionation in major near-surface reservoirs.
High-temperature diffusion fractionation of Li isotopes has recently been recognized as an
important mechanism for the isotopic fractionation in crustal and mantle-derived rocks.

Figure 5. Variation of d7Li with Li content for minerals and bulk rocks of peridotite xenoliths
compared with published data. Dashed black arrow shows the trend for alteration of oceanic crust
and the grey arrow for the dehydration trend of subducted slab. The dashed grey line represents the
linear correlation of d7Li and 1/Li for the bulk peridotites from the Fanshi and Hannuoba, showing a
mixing trend of EM1 and DM. Some minerals with higher Li contents and lower d7Li are plotted
below the mixing field due to recent Li ingress into the minerals. Data sources are the same as those
identified in Figures 1 and 3.
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Many scientific achievements have been made in Li isotope geochemistry. However, the
origins of low d7Li in mantle-derived rocks are still poorly constrained.

The correlation between d7Li and Sr-Nd isotope ratios of cpx in peridotite xenoliths,
associated with previous findings, suggests that the recycling of ancient oceanic crust could
produce a low-d7Li component in the mantle and that isotopically light Li may be a feature
of EM-1 end member. Meanwhile, dehydration of the subducted slab could result in the d7Li
in mantle wedge and HIMU member higher than that of the normal mantle. These processes
may be dependent on the mineral compositions and physical state of subducted slab.
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