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High-Mg# peridotite xenoliths in the Cenozoic Hebi basalts from the North China Craton have refractory min-
eral compositions (Fo>91.5) and highly heterogeneous Sr–Nd isotopic compositions (87Sr/86Sr=0.7031–
0.7048, 143Nd/144Nd=0.5130–0.5118) ranging from MORB-like to EM1-type mantle, which are similar to
those of peridotites from Archean cratons. Thus, the high-Mg# peridotites may represent relics of the ancient
lithospheric mantle. Published Re–Os isotopic data for Cenozoic basalt-borne xenoliths show TRD ages of 3.0–
1.5 Ga for the peridotites from Hebi (the center of the craton), 2.2–0 Ga for those from Hannuoba and Jining
(north margin of the craton), and 2.6–0 Ga for those from Fanshi and Yangyuan (midway between the center
and north margin of the craton). In situ Re–Os data of sulfides in Hannuoba peridotites suggest that whole-
rock Re–Os model ages represent mixtures of multiple generations of sulfides with varying Os isotopic com-
positions. These observations indicate that initial lithospheric mantle beneath the Central Zone of the North
China Craton formed during the Archean and was refertilized by multiple melt additions after its formation.
The refertilization became more intensive from the interior to the margin of the craton, leading to the high
heterogeneity of the lithospheric mantle: more ancient and refractory peridotites with highly variable Sr–
Nd isotopic compositions in the interior, and more young and fertile peridotites with depleted Sr–Nd isotopic
composition in the margin. Our data, coupled with published petrological and geochemical data of peridotites
from the Central Zone of the North China Craton, suggest that the lithospheric mantle beneath this region is
highly heterogeneous, likely produced by refertilization of Archean mantle via multiple additions of melts/
fluids, which were closely related to the Paleoproterozoic collision between the Eastern and the Western
Blocks and subsequent circum-craton subduction events.

© 2012 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.
1. Introduction

Characterization of subcontinental lithospheric mantle has made
contributions to our understanding of the formation and secular evo-
lution of continents. Mantle xenoliths entrained in mantle-derived
magmas are direct samples of lithospheric mantle and record wealth
of information about the formation and evolution of the lithospheric
mantle. Many investigations based on mantle xenoliths have shown
that the North China Craton (NCC) has been severely destroyed dur-
ing the Phanerozoic (e.g., Fan and Menzies, 1992; Griffin et al.,
1992; Menzies et al., 1993; Griffin et al., 1998; Menzies and Xu,
1998; Fan et al., 2000; Xu, 2001; Wu et al., 2006; Zhang et al., 2007;
Zheng et al., 2007; Xu et al., 2008a; Zhang et al., 2009; Xu et al.,
2010). Diamond inclusions, mantle xenoliths and minerals xenocrysts
in the Ordovician kimberlites indicate that the lithospheric mantle
beneath the NCC was thick (about 200 km), cool (geotherms
36–40 mW/m2), and typically Archean in compositions prior to the
00029, China. Tel.: +86 10

ng).

ssociation for Gondwana Research.
Paleozoic. However, the Tertiary basalt-borne xenoliths reveal the
presence of thin (b80 km), hot (50–105 mW/m2) and fertile litho-
sphere in the Cenozoic (Fan and Menzies, 1992; Menzies et al.,
1993; Griffin et al., 1998; Menzies and Xu, 1998; Xu et al., 1998;
Zheng et al., 1998; Fan et al., 2000; Xu, 2001; Gao et al., 2002;
Zhang et al., 2009). This suggests the great changes in compositions
and character of the lithospheric mantle during the Phanerozoic.
Coupled with the changes is the widespread Mesozoic–Cenozoic
magmatism (Zhou and Armstrong, 1982; Zhang et al., 2002; Yang et
al., 2003; Zhang et al., 2003, 2004). Geochronological and geochemi-
cal studies of the igneous rocks and their mantle xenoliths have pro-
vided valuable information on the timing and mechanism of
destruction of the NCC (e.g., O'Reilly et al., 2001; Xu, 2001; Gao et
al., 2002; Zhang et al., 2002; Rudnick et al., 2004; Xu et al., 2004;
Wu et al., 2006; Zheng et al., 2006; Menzies et al., 2007; Zhang et
al., 2010a). However, the mechanism and process of the destruction
are still subjects of considerable debate.

It should be noted that the NCC is divided into the Eastern and
Western Blocks, separated by a Central Zone, and most of the above
studies were based on the Eastern Block of the NCC (Fig. 1). Com-
pared to the tectonothermal reactivation of the eastern NCC since
Published by Elsevier B.V. All rights reserved.
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Fig. 1. Geologic and tectonic map of the North China Craton, revised after Zhao et al. (2000, 2008) and Santosh (2010), showing the distributions of the main tectonic subdivisions,
rocks of different ages and mantle xenolith localities mentioned in the text. The NSGL represents the North–South Gravity Lineament (Ma, 1989).
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the Mesozoic, the Western Block remains relatively stable since the
Precambrian with only few magmatic activities. Thus, the Central
Zone is the transitional zone of Phanerozoic magmatism, as well as
crustal elevation, morphology, lithospheric thickness and gravity
anomalies from the Eastern to the Western Block (Ma, 1989; Griffin
et al., 1998; Menzies and Xu, 1998). Therefore, understanding the na-
ture and evolution of the mantle lithosphere beneath the Central
Zone is crucial to unravel mechanism and processes of destruction
of the NCC. However, these aspects of the Central Zone are not well-
constrained.

In this paper, we report the petrological and Sr–Nd isotopic com-
positions of peridotite xenoliths from Hebi County, Henan Province,
which tectonically located in the east edge of the Central Zone
(Fig. 1). Our main aim is to further constrain the nature and origin
of the lithospheric mantle beneath the Central Zone by reviewing
the data available for mantle xenoliths from the Central Zone of the
NCC. Our study will provide an insight into the destruction of the NCC.

2. Geologic setting

The NCC is one of the Archean continental nuclei in the world and
comprises three subdivisions (Fig. 1), i.e. the Eastern Block, the Cen-
tral Zone and the Western Block (Zhao et al., 2000; Santosh, 2010;
Kusky, 2011). The Western Block is composed of the Yinshan Block
and the Ordos Block which were joined by the east–west trending
Inner Mongolia Suture Zone at ~1.95 Ga (Santosh, 2010; Zhao et al.,
2010a). This suture zone is also termed Khondalite Belt (Zhao et al.,
2010a), with dominant lithology of graphite–garnet–sillimantie
gneiss, garnet quartzite, felsic paragneiss, calc-silicate rock and mar-
ble. The basement of the Western Block mainly consists of
granulite-facies tonalitic, trondhjemitic and granodioritic (TTG)
gneisses and charnockites, which are unconformably overlain by Ar-
chean to Paleoproterozoic metasedimentary belts (Zhao et al.,
2000). Paleoproterozoic ultrahigh temperature metamorphism has
been observed in the Western Block (Santosh et al., 2007a, 2007b,
2009, 2011). The basement of the Eastern Block primarily consists
of Archean TTG gneisses, granitoids, granitic gneisses and supracrus-
tal rocks (Zhao et al., 2000).

The Central Zone is also called Trans-North China Orogen, roughly
north–south trending across the NCC (Fig. 1). It consists of 2.5–2.7 Ga
TTG gneisses, greenschist facies mafic rocks, amphibolites, high-
pressure granulites and retrograded eclogites (Zhao et al., 2000;
Zhang et al., 2006; Zhai and Santosh, 2011). This orogen was formed
by the collision between the Eastern and the Western Blocks at about
1.85 Ga (Zhao et al., 2000, 2010a; Santosh, 2010), marking the forma-
tion of the NCC although the subduction polarity and the amalgam-
ation timing of the various blocks remain debated (Kröner et al.,
2005; Santosh, 2010; Zhao et al., 2010b; Kusky, 2011).

TheWestern Block remains relatively stable since the Precambrian
and the lithosphere of this block is about 200 km thick. In contrast,
the Eastern Block has experienced widespread tectono-thermal reac-
tivation since the Late Mesozoic, as manifested by the emplacement
of voluminous Late Mesozoic granites, mafic intrusions and volcanic
rocks (Zhang et al., 2002, 2003; Yang et al., 2003; Zhang et al.,



Table 1
Mineral modes (vol.%) of the Hebi peridotites.

Sample Olivine Opx Cpx Spinel

05HB68 69 27 3 1
05HB70 79 18 1 2
05HB72 81 16 1 2
HB1120 77 22 0 1
HB1121 77 21 2 0
HB1122 73 24 1 2
HB1125 67 30 1 2
HB1126 71 27 1 1
05HB09 75 23 2 0
HB1128 70 29 0 1
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2004) and extensive Cenozoic basalts (Zhou and Armstrong, 1982;
Fan et al., 2000; Tang et al., 2006; Zhang et al., 2011). Ordovician dia-
mondiferous kimberlites occur mainly in the Mengyin County, Shan-
dong Province, and the Fuxian County, Liaoning Province in the
Eastern Block (Fig. 1) (Dobbs et al., 1994). The lithosphere in these lo-
calities was cool and thick at the time of emplacement (Menzies et al.,
1993; Griffin et al., 1998), with highly refractory compositions in
mantle peridotites, indicating the existence of an Archean lithospher-
ic keel beneath the Eastern Block at least until the kimberlite em-
placement (Gao et al., 2002; Zheng et al., 2006; Zhang et al., 2008,
2009). In contrast, the Cenozoic basalts sampled a shallower and hot-
ter lithosphere, with predominantly fertile compositions as mani-
fested by the mantle peridotites (Fan et al., 2000; Zheng et al.,
2001; Rudnick et al., 2004; Zhang et al., 2009), consistent with the
geophysical observation of a thin lithosphere (80–60 km) in the East-
ern Block (Yuan, 1996; Griffin et al., 1998; Chen et al., 2006). These
observations suggest that the destruction of the NCC mainly occurred
in the Eastern Block during the Phanerozoic.

The NEE-trending North–south Gravity Lineament (NSGL, Fig. 1)
runs over 3500 km from south China to northeast China. It is a zone
about 100 km wide, in which the Bouguer anomaly decreases rapidly
from −100 mGal in the west to −40 mGal in the east (Ma, 1989).
This gravity gradient roughly overlaps the Central Zone. To the east
of the gravity lineament, the Eastern Block is characterized by a thin
crust and lithosphere, high heat flow and weak negative to positive
regional Bouguer anomalies; to the west of the gravity lineament,
the Ordos nucleus has a thick crust and lithosphere, low heat flow
and strong negative Bouguer anomalies (Ma, 1989; Yuan, 1996).
The Hebi area of Henan province lies east of the gravity lineament
and tectonically in the east edge of the Central Zone. Both Neogene
basalts and Cretaceous–Eogene barren kimberlites occur in the Hebi.
Olivine nephelinites are in 10 km south of Hebi city and have eruption
ages of 4.0–4.3 Ma. The nephelinites contain abundant mantle xeno-
liths and megacrysts (up to 5 cm across) of garnet and pyroxene
(Zheng et al., 2001). The kimberlites occur 6 km west of Hebi city
and contain rare altered dunite and lherzolite xenoliths (Griffin et
al., 1998).

3. Sample description and previous studies

Peridotite xenoliths in the Hebi Neogene olivine nephelinites are
very fresh and belong to the Cr-diopside suite (Wilshire and
Shervais, 1975). They range from 1 to 8 cm in diameter, with majority
about 2 to 6 cm. The petrology, major- and trace-element, Re–Os, Li
and Fe isotopic compositions of peridotite xenoliths from the Hebi
have been studied previously (Zheng et al., 2001, 2007; Xu et al.,
2008b; Zhao et al., 2010c; Liu et al., 2011; Tang et al., 2011). The
Hebi peridotite xenoliths are dominant harzburgites with minor lher-
zolites. They can be divided into two groups based on the forsterite
proportion in olivine (Fo): a low-Mg# group (Fob91) and a high-
Mg# group (Fo≥91). The low-Mg# peridotites are fertile (rich in ba-
saltic components, such as Al2O3, Na2O and CaO) in mineral composi-
tions, typical of Phanerozoic mantle. The high-Mg# peridotites
consist of highly refractory harzburgite (Al2O3 contentb1.5%) and
cpx-poor (cpx vol%b5%) lherzolites with coarse-grained and por-
phyroclastic structures, compositionally similar to xenoliths in kim-
berlites from Archean cratons. Thus the high-Mg# xenoliths have
been interpreted as relics of the Archean cratonic mantle beneath
the NCC (Zheng et al., 2001), and Re–Os isotopic data of the perido-
tites and their sulfides give Archean melt-extraction ages of 2.5–
3.0 Ga (Zheng et al., 2007; Xu et al., 2008a). Li and Fe isotopic compo-
sitions of the Hebi peridotites suggest that the ancient lithospheric
mantle beneath the Hebi experienced multistage metasomatism
(Zhao et al., 2010c; Tang et al., 2011).

In this study, ten spinel-facies harzburgite xenoliths were selected
for mineral chemical and Sr–Nd isotopic analyses. These samples are
very fresh and 4–6 cm in diameter, with high modal opx (17–32%)
and minor cpx contents (b4%; Table 1). Cpx is absent in some xeno-
liths. Most of the samples have coarse-grained structures and the ol-
ivine and opx grains are generally 3–6 mm in diameter, with
maximum up to 10 mm. Porphyroclastic structures are also observed
in these samples, with coarse olivine porphyroclasts in a matrix of
fine-grained recrystallized/secondary minerals. Siliceous, aluminum-
and alkali-rich glasses with fine-grained cpx phenocrysts are com-
mon in patches and small veins. Phlogopites are not observed in
these samples.

4. Analytical methods

The xenoliths were sawn from their lava hosts and the cut surfaces
were abraded with quartz to remove any possible contamination
from the saw blade. The samples were crushed and sieved for mineral
separation. Opx and cpx separates were handpicked under a binocu-
lar microscope to a purity of >99%.

Mineral modal contents have been determined by point-counting
more than 1000 points in each thin section (Table 1). Major element
compositions of minerals in the peridotite xenoliths were measured
at the Institute of Geology and Geophysics, Chinese Academy of Sci-
ences using a JEOL JXA8100 electron probe microanalyzer (EPMA).
The operating conditions were as follows: accelerating voltage of
15 kV, 10 nA beam current, 5 μm beam spot and 10–30 s counting
time. Natural minerals and synthetic oxides were used for standard
calibration, and a program based on the ZAF procedure was used for
data correction. The precisions of all analyzed elements are better
than 1.5% based on multiple analyses of different grains within a
sample.

Sr and Nd isotope compositions of cpx and opx separates from the
xenoliths were determined at the Institute of Geology and Geophys-
ics. The mineral separates were washed with 6 M HCl for 12 h and
then ground to 200–400 mesh using an agate mortar before isotopic
analysis. Analytical details for sample digestion, column separation
and mass spectrometric measurement procedures are described in
Chu et al. (2009a, 2009b). About 30–100 mg of cpx and 300–400 mg
of opx powder was weighed into Teflon vials, and appropriate
amounts of mixed 87Rb–84Sr and 149Sm–150Nd spikes were added.
The samples were dissolved using a mixed acid of HF and HClO4 on
a hotplate at 120 °C for more than 1 week. After the samples were
completely dissolved, the solutions were dried on hotplate at 130–
180 °C to remove the HF and HClO4. The sample residues were re-
dissolved in 4 ml of 6 M HCl, and then dried again. Finally, the
samples were dissolved in 2 ml of the 3% H3BO3 in 2.5 M HCl. The
solutions were loaded onto pre-conditioned AG 50W×12 columns
for separation. Rb and Sr were stripped with 5 M HCl, and Nd and
Sm were stripped with 0.14 M and 0.4 M HCl, respectively. The Rb,
Sr, Nd and Sm were completely separated in our experiments.

The Rb–Sr and Sm–Nd isotopic analyses were performed on an
IsoProbe-T thermal ionization mass spectrometer (GV instruments,
England). Measured 87Sr/86Sr and 143Nd/144Nd ratios were corrected



133Y.-J. Tang et al. / Gondwana Research 23 (2013) 130–140
for mass-fractionation using 86Sr/88Sr=0.1194 and 146Nd/
144Nd=0.7219, respectively. During the period of data collection, the
measured values for the NBS-987 Sr standard and the JNdi-1 Nd
standard were 86Sr/88Sr=0.710245±16 (2 s, n=8) and 143Nd/
144Nd=0.512117±10 (2 s, n=8), respectively. The USGS reference
material BCR-2 was measured to monitor the accuracy of the analytical
procedures. Our results are: 46.55 ppm Rb, 339.3 ppm Sr, 87Sr/
86Sr=0.704986±13 (2 s), 6.543 ppm Sm, 28.60 ppm Nd, and 143Nd/
144Nd=0.512641±16 (2 s). These values are comparable with the
reported reference values: 45.5–48.5 ppm Rb, 312–355 ppm Sr, 87Sr/
86Sr=0.704958–0.705027, 6.41–6.63 ppm Sm, 26.7–29.9 ppm Nd,
and 143Nd/144Nd=0.512633–0.512644 (GeoREM, http://georem.
mpch-mainz.gwdg.de/). The procedural blanks were 10, 49, 10 and
19 pg for Rb, Sr, Sm and Nd, respectively, which were less than 0.1% of
the amount of samples loaded.

5. Results

5.1. Major elements

Olivine, opx, cpx and spinel in these peridotites xenoliths are ho-
mogeneous (2 sb0.2) in major elemental compositions based on the
determination of individual phases between core and rim. The aver-
age composition of 4–5 point analyses is presented in Table 2. Oliv-
ines in the xenoliths have high Fo (91.5–92.7) and low MnO
(average 0.1%) and NiO (average 0.4%) contents. Opx minerals have
high Mg# ranging from 91.9 to 92.7, low Al2O3 (2.0–3.4%) and CaO
(0.3–1.1%) contents. Cpx minerals have Mg# varying from 92.1 to
93.2, Al2O3 of 3.0–4.6% and Cr2O3 of 1.1–2.2% (Table 2). Mineral
modal contents (Fig. 2) and chemical compositions (Figs. 3–5) are
similar to those of published high-Mg# peridotites from the Hebi
(Zheng et al., 2001; Tang et al., 2011), harzburgite xenoliths entrained
in the Cenozoic Fanshi (Tang et al., 2008, 2011) and Yangyuan basalts
(Xu et al., 2008b) and Mesozoic Fushan diorites (Xu et al., 2010) in
the Central Zone of the NCC (Fig. 1), which were interpreted as the
residues of ancient lithospheric mantle.

5.2. Sr–Nd isotopic composition

Sr and Nd isotopic compositions of cpx and opx in the Hebi perido-
tites are given in Table 3 and illustrated in Fig. 6. They show a large
variation ranging from MORB-like to high 87Sr/86Sr (up to 0.7044)
and very low 143Nd/144Nd (down to 0.5118). Two samples display ex-
tremely low 143Nd/144Nd ratios relative to its Sr isotope ratios, having
the signature of EM1-typemantle (Fig. 6). One sample falls within the
field for the Mesozoic lithospheric mantle constrained by peridotite
xenoliths (Xu et al., 2010) and mafic rocks (Zhang et al., 2004;
Wang et al., 2006) from the Central Zone of the NCC (Fig. 6). In con-
trast, the cpx separates have higher Sr (most>100 ppm) and Nd
(most>2 ppm) contents and relatively lower 87Sr/86Sr ratios
(0.70309–0.70415) than the opx (Srb10 ppm, Ndb0.3 ppm, 87Sr/
86Sr=0.70353–0.70483). The opx are generally higher in Rb contents
and Rb/Sr ratios than the coexisting cpx.

6. Discussion

6.1. Major element geochemistry and origin

Typical Archean cratonic mantle is generally composed of highly
refractory (Fo>92.5) harzburgites and cpx-poor lherzolites (Boyd,
1989), which are highly depleted in basaltic components due to
high-degree melt extraction. In contrast, most Proterozoic and Phan-
erozoic lithospheric mantle worldwide are moderately depleted com-
pared with primitive mantle (O'Reilly et al., 2001; Beyer et al., 2006).
The Hebi peridotites studied here have high Fo (91.5–92.7) and thus
are affiliated to the high-Mg# group (Fo>91; Zheng et al., 2001).
Their mineral modes are similar to those from the Archean Kaapvaal
craton, South Africa (Fig. 2) and are plotted in the fields for the peri-
dotite xenoliths from the Archean Siberian and Kaapvaal cratons
(Fig. 3) (Griffin et al., 2003) and from the Paleozoic diamondiferous
kimberlites in the NCC due to their refractory mineral compositions:
high Fo and low MnO in olivine (Fig. 4), high Mg# and low Al2O3 in
opx and cpx (Fig. 5). These characteristics are similar to those pub-
lished for the Hebi high-Mg# peridotites, Fushan and Fanshi harzbur-
gites, some Yangyuan peridotites and olivine xenocrysts from the
Mesozoic and Cenozoic basaltic rocks in the Central Zone, which
were considered as residues of the Archean lithospheric mantle
(Zheng et al., 2001; Tang et al., 2004; Zheng et al., 2006; Tang et al.,
2008; Xu et al., 2008b; Xu et al., 2010; Ying et al., 2010; Liu et al.,
2011; Tang et al., 2011).

Therefore, the Hebi harzburgites represent residues of Archean
lithospheric mantle beneath this region. Most of them have Fo
lower than that of typical Archean cratonic mantle (Fo>92.5; Boyd,
1989), indicating that the harzburgites were likely modified by
melt–rock reaction, similar to those from the Archean cratons of
Kaapvaal and Siberia, rather than the products of simple melt extrac-
tion (Kelemen et al., 1998; Zhang, 2009).

6.2. Sr–Nd isotopic compositions and mantle processes

The most striking character of Sr–Nd isotopic compositions of cpx
in the Hebi harzburgites is the extreme heterogeneity. They display a
large variation ranging from depleted-mantle to EM1-endmember
compositions, similar to those of peridotites from ancient cratonic
lithospheric mantle worldwide (Fig. 6). Since the changes in Rb/Sr
and Sm/Nd ratios caused by mantle metasomatism will, with time,
produce extreme isotopic heterogeneity, the cpx likely evolved from
the mixing of a MORB-like lithospheric composition with several
enriched components related to melt/fluid influx (Frey and Green,
1974). Melt/fluid derived from recycled or subducted materials may
have considerable ranges in Sr/Nd ratios and isotopic compositions.
This is evidenced by the large variations of isotopic compositions in
the Late Mesozoic lavas of andesites, dacites and adakites (Zhang et
al., 2003; Gao et al., 2004) and Hannuoba pyroxenite xenoliths (Xu,
2002) that involved recycled crustal components. As a result, the in-
flux of recycled materials may account for the spread of the data
(Fig. 6).

Two samples show an EM1-like isotopic signature of the Mesozoic
lithospheric mantle beneath the same region (Fig. 6) that was consid-
ered to have been previously modified by silica-rich melts released
from subducted materials (Wang et al., 2006; Tang et al., 2008). The
subduction may be related to the Paleoproterozoic collision between
the Eastern and the Western Blocks (Zhao et al., 2000; Santosh et al.,
2010) because there is no evidence showing any collision in the inte-
rior of the NCC during the Phanerozoic. The EM1-typemantle beneath
the Central Zone is also evidenced by the isotopic compositions of pe-
ridotite xenoliths from the Cenozoic Fanshi and Yangyuan basalts
(Ma and Xu, 2006; Tang et al., 2007, 2008; Xu et al., 2008b), indicat-
ing a secular evolution of the subcontinental lithospheric mantle. This
conclusion is also supported by the modeling calculations of the evo-
lution of 143Nd/144Nd with time in the xenoliths assumed to have
been modified by recycled crustal materials at 1.8 Ga (Fig. 7). There-
fore, the enriched isotopic compositions in the Hebi harzburgites
may reflect ancient enrichment processes of the Archean lithospheric
mantle.

Some of the Hebi harzburgites have MORB-like Sr–Nd isotopic
compositions of cpx (Fig. 6), indicating that these peridotites were
modified by recent asthenospheric melt–peridotite reaction (Zhang,
2009), which is consistent with their relatively low Fo values
(Fig. 8) and high concentrations of heavy rear earth elements as ob-
served in the Fanshi peridotites (Tang et al., 2008). As stated above,
the harzburgites are considered to be the relics of Archean

http://doi:10.1016/j.lithos.2012.01.027
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Table 2
Major elemental compositions (wt.%) of minerals in Hebi mantle xenoliths.

Sample Mineral SiO2 MgO FeO CaO Al2O3 Cr2O3 Na2O NiO MnO TiO2 Total Mg#

05HB68 Ol 41.42 49.70 7.97 0.07 0.06 0.03 0.01 0.35 0.12 0.02 99.8 91.8
05HB70 Ol 41.61 49.91 7.65 0.07 0.00 0.01 0.00 0.40 0.10 0.00 99.8 92.1
05HB72 Ol 41.62 50.11 8.14 0.10 0.00 0.07 0.00 0.37 0.12 0.00 100.5 91.7
HB1120 Ol 41.44 49.73 7.71 0.11 0.04 0.01 0.01 0.44 0.11 0.02 99.6 92.1
HB1121 Ol 41.38 50.36 8.05 0.11 0.03 0.02 0.02 0.40 0.11 0.00 100.5 91.8
HB1122 Ol 41.70 49.69 7.82 0.09 0.01 0.03 0.01 0.38 0.09 0.01 99.8 92.0
HB1125 Ol 41.16 49.27 8.07 0.11 0.00 0.00 0.03 0.31 0.12 0.01 99.1 91.7
HB1126 Ol 42.02 49.97 8.36 0.06 0.00 0.01 0.00 0.43 0.11 0.00 101.0 91.5
05HB09 Ol 41.56 50.29 7.92 0.08 0.03 0.00 0.00 0.40 0.12 0.00 100.4 92.0
HB1128 Ol 42.08 50.99 7.27 0.00 0.03 0.00 0.00 0.46 0.07 0.00 100.9 92.7
05HB68 Opx 56.28 32.88 4.96 1.07 3.17 0.82 0.02 0.13 0.15 0.00 99.5 92.3
05HB70 Opx 56.15 32.68 5.04 1.02 3.00 0.77 0.03 0.14 0.14 0.00 99.0 92.1
05HB72 Opx 55.89 32.99 4.81 0.96 3.44 0.91 0.13 0.13 0.13 0.02 99.4 92.5
HB1120 Opx 56.54 33.08 5.22 1.07 3.03 0.83 0.04 0.14 0.07 0.03 100.0 91.9
HB1121 Opx 56.06 33.04 4.84 0.97 3.16 0.84 0.05 0.10 0.13 0.01 99.2 92.5
HB1122 Opx 56.36 33.23 5.00 0.99 2.73 0.75 0.11 0.04 0.13 0.00 99.4 92.3
HB1125 Opx 56.49 33.49 4.78 0.84 2.74 0.83 0.07 0.11 0.08 0.00 99.4 92.7
HB1126 Opx 57.15 33.33 5.17 0.56 2.57 0.61 0.12 0.10 0.11 0.00 99.7 92.1
05HB09 Opx 56.24 33.49 5.03 0.99 2.78 0.84 0.02 0.12 0.11 0.01 99.6 92.3
HB1128 Opx 57.49 34.78 4.93 0.29 1.95 0.28 0.05 0.11 0.12 0.01 100.0 92.7
05HB68 Cpx 52.58 17.17 2.43 21.27 3.23 1.07 0.42 0.05 0.06 0.05 98.3 92.7
05HB70 Cpx 53.13 16.95 2.26 21.20 3.06 1.17 0.39 0.03 0.13 0.02 98.3 93.1
05HB72 Cpx 52.82 15.79 2.36 19.19 4.55 1.66 1.66 0.04 0.09 0.34 98.5 92.3
HB1120 Cpx 52.80 17.02 2.41 20.96 3.09 1.36 0.49 0.08 0.08 0.09 98.4 92.7
HB1121 Cpx 53.05 16.81 2.21 21.03 3.01 1.25 0.54 0.07 0.08 0.09 98.1 93.2
HB1122 Cpx 53.24 16.89 2.42 20.54 3.00 1.34 0.76 0.08 0.05 0.22 98.5 92.6
HB1125 Cpx 52.93 17.32 2.42 21.33 2.60 1.27 0.47 0.04 0.02 0.05 98.4 92.8
HB1126 Cpx 54.02 15.04 2.31 19.00 3.66 2.23 2.22 0.06 0.09 0.34 99.0 92.1

Mg#=100×mol Mg2+/(Mg2++Fe2+).
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lithospheric mantle. Therefore, the depleted isotopic compositions re-
flect the effect of reaction between old peridotites and
asthenosphere-derived melt (Fig. 6).

Refractory peridotite (high Fo) should be lower in Rb/Sr and
higher in Sm/Nd than primitive mantle due to the more incompatibil-
ity of Rb than Sr and Nd than Sm during partial melting (Adam and
Green, 2006) and thus be lower in 87Sr/86Sr and higher 143Nd/144Nd
ratios than fertile peridotite (low Fo) and primitive mantle. This is
completely opposite to the observation that olivine Fo in the Cenozoic
basalt-borne peridotite xenoliths from the Central Zone positively
correlate with Sr isotope ratios and negatively correlate with Nd iso-
tope ratios (Fig. 8). Therefore, the correlations between Sr–Nd
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Tang et al., 2011), Datong (Liu et al., 2011); Jining (Liu et al., 2011; Zhang et al., in press); Yan
2000; Rudnick et al., 2004; Tang et al., 2007; Liu et al., 2011).
isotopic compositions and olivine Fo, first discussed in the Hannuoba
peridotites (Zhang et al., 2009), likely reflect different-degree referti-
lization of originally refractory precursors through reaction with
asthenosphere-derived melts (Tang et al., 2008; Zhang et al., 2009).

Compilation of Sr and Nd isotopic compositions of peridotites re-
veals that very few samples from ancient cratonic mantle keep the
characteristics of ancient melt residues, although their major-
element compositions reflect an origin as melt residues (Menzies,
1990; Pearson, 1999). For example, Nd isotopes in peridotite xeno-
liths (Fig. 6) from global cratons range from high 143Nd/144Nd ratios,
indicative of long-term parent–daughter depletion, to low 143Nd/
144Nd ratios, requiring ancient parent–daughter enrichment.
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et al., 2011 and this study), Fanshi (Tang et al., 2008; Xu et al., 2008b; Liu et al., 2011;
gyuan (Xu et al., 2008b; Liu et al., 2011) and Hannuoba (Song and Frey, 1989; Fan et al.,
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Consequently, the greatly heterogeneous isotopic compositions in the
lithospheric mantle beneath the Central Zone reflect the diversity in
parent–daughter elemental fractionation in minerals coupled with
ancient, multiple-stage histories of melt depletion and subsequent
refertilization through melt influx. This is also supported by the ele-
mental and isotopic characteristics of coexisting opx and cpx in the
Hebi peridotites (Table 3, Fig. 6), which are similar to those in the
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Cenozoic basalts on the eastern NCC (Zheng et al., 1998, 2001). Data sources in addition
to those designated in Fig. 2 include Hannuoba data from Fan and Hooper (1991) and
Chen et al. (2001).

Fig. 5. Mg# vs. Al2O3 of opx and cpx in the mantle xenoliths from the Central Zone and
the West Block of the NCC. Data sources are as in Fig. 3.
Fanshi peridotites, indicating multiple melt/fluid–peridotite interac-
tions (Tang et al., 2011).

6.3. Re–Os isotopic data and nature of the lithospheric mantle

The Re–Os system has proven to be particularly useful in tracing
the geochemical evolution of mantle rocks and in defining the chro-
nology of mantle differentiation (Walker et al., 1989; Shirey and
Walker, 1998). Nevertheless, an increasing number of studies have
found that the Re–Os system in cratonic peridotites can be disturbed
by peridotite–melt reaction, especially when reaction preceded erup-
tion by large time intervals (Pearson et al., 1998; Alard et al., 2002;
Zhang et al., 2008, 2009).

Sulfides from a mantle peridotite that underwent melt depletion
and refertilization events may have a wide range of Re–Os model
ages, reflecting different generations of “old” sulfides (residual after
melt depletion) and later sulfide melts (interstitial sulfides related
to melt/fluid metasomatism) (Pearson et al., 1999, 2002; Alard et
al., 2002; Aulbach et al., 2004; Griffin et al., 2004; Xu et al., 2008a;
Zhang et al., 2008, 2009; Harvey et al., 2010). This implies that the
bulk-rock Re and Os budget will be controlled by the relative contri-
butions from these sulfide populations, which are dependent on
melt/rock ratios and the degree of S-saturation of the percolating
melt during the refertilization of lithosphere (Reisberg et al., 2005;
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Zhang et al., 2009; Xiao and Zhang, 2011). As a result, melt percola-
tion could lead to significant changes in the Os isotopic compositions
of the refertilized peridotites. Thus, whole-rock Os isotope composi-
tions reflect the mixtures of different generations of sulfides. There-
fore, the significant variability in Os isotopic compositions of
sulfides within individual peridotite samples calls into question the
significance of many published whole-rock “depletion ages”
(Pearson et al., 2002).

Re–Os isotopic ages in the peridotite xenoliths from the NCC vary
greatly, with Re-depletion model ages (TRD) ranging from 0 to 3.0 Ga
and Re–Os model ages (TMA) of 0–3.5 Ga (Fig. 9). For example, most
of the Hannuoba peridotites have Proterozoic whole-rock Re–Os
model ages, resembling the Cenozoic basalt–host peridotites from
other localities on the North China Craton (Fig. 9). However, the in
situ TRD and TMA model ages of sulfides in the Hannuoba samples
show a larger range, from Archean to Phanerozoic model ages, than
Table 3
Sr and Nd isotopic compositions of cpx and opx in the peridotite xenoliths.

Sample Rb (ppm) Sr (ppm) Sm (ppm) Nd (ppm) 87R

Cpx
05HB68 0.003 144 0.355 4.72 0.0
05HB70 0.030 56.7 0.308 1.97 0.0
05HB72 0.660 315 4.01 20.9 0.0
HB1120 0.041 76.8 0.133 0.96 0.0
HB1121 0.000 167 0.247 2.25 0.0
HB1122 0.004 266 0.909 8.43 0.0
HB1125 0.003 161 0.506 5.88 0.0
HB1126 0.004 479 6.65 26.9 0.0

Opx
05HB68 0.013 1.37 0.0
05HB70 0.010 1.27 0.019 0.073 0.0
05HB72 0.017 2.85 0.063 0.207 0.0
HB1120 0.007 1.49 0.0
HB1121 0.013 1.37 0.0
HB1122 0.011 1.37 0.010 0.094 0.0
HB1125 0.015 9.91 0.0
HB1126 0.035 4.25 0.073 0.231 0.0
05HB09 0.039 1.99 0.451 0.070 0.0
HB1128 0.081 8.77 0.070 0.325 0.0
the whole-rock ages of the peridotites, strongly indicating that the
whole-rock ages are not the true formation ages of the peridotites,
but the mixing ages of multiple generations of sulfides (Pearson et
al., 2002; Griffin et al., 2004; Xu et al., 2008a; Zhang et al., 2009).
The TRD ages of these peridotites apparently correlate with olivine
Fo (Fig. 9), which is traditionally explained as melting trend (Griffin
et al., 2004). Alternatively, this correlation could also reflect the reac-
tion trend of a depleted residue with asthenosphere-derived melts
(Zhang et al., 2009). The refertilization of peridotites could lower
the Fo of olivine (Zhang, 2005; Griffin et al., 2009) and result in the
positive correlations between Re abundances and Al2O3 and Yb con-
tents in the peridotites by additions of Fe, Al, Yb and Re (Zhang et
al., 2009). Therefore, the correlation between TRD ages and olivine
Fo may reflect the combined results of partial melting and refertiliza-
tion processes and the latter lowered the TRD ages of the peridotites
due to the additions of Re and less radiogenic Os or younger sulfide
b/86Sr 87Sr/86Sr 2σ 147Sm/144Nd 143Nd/144Nd 2σ

001 0.703092 10 0.0456 0.512942 9
015 0.703359 10 0.0944 0.513004 7
006 0.703246 10 0.1160 0.513039 6
015 0.704151 8 0.0841 0.511825 8
000 0.703862 8 0.0665 0.512144 12
000 0.703312 7 0.0652 0.512758 7
001 0.703242 8 0.0521 0.512960 10
000 0.703715 14 0.1494 0.512896 9

276 0.703529 10
234 0.703454 15 0.1604 0.513005 7
172 0.703560 10 0.1844 0.513003 24
144 0.704055 11
277 0.703891 10
230 0.704394 35 0.0664 0.512655 12
045 0.704829 10
241 0.703576 13 0.1921 0.512920 8
561 0.704215 17 3.9155 0.512795 7
268 0.703655 11 0.1293 0.512907 7
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introduction, which could obliterate the evidence of old ages (Griffin
et al., 2004).

The Re–Os isotopic data of Paleozoic kimberlite-borne xenoliths
demonstrated that Archean lithospheric mantle existed beneath the
eastern NCC during the Paleozoic (Gao et al., 2002; Wu et al., 2006;
Zhang et al., 2008; Chu et al., 2009b). However, most of the peridotite
xenoliths hosted by the Cenozoic basalts have Proterozoic TRD and
TMA ages, with only a few xenoliths having Phanerozoic ages
(Fig. 9). The scarcity of Archean TRD ages may reflect that nearly all
the Archean lithospheric mantle beneath the eastern NCC has been
replaced (Gao et al., 2002; Wu et al., 2006; Chu et al., 2009b) or refer-
tilized by multiple-stage influx of melts (Xu et al., 2008a; Zhang et al.,
2008, 2009; Xiao and Zhang, 2011). In contrast, some peridotites in
the Mesozoic and Cenozoic basaltic rocks in the Central Zone of the
NCC have whole-rock (Xu et al., 2008b) or sulfide (Zheng et al.,
2007; Xu et al., 2008a) TRD ages of Archean, reflecting the existence
of Archean mantle beneath this region. However, the wide range in
TRD ages observed in single peridotite and their sulfides may reflect
progressive modification of the lithospheric mantle by fertile mate-
rials (Xu et al., 2008a), as is well documented for the peridotites
from other regions of the world (Pearson et al., 1999, 2002; Alard et
al., 2002; Griffin et al., 2004; Harvey et al., 2010). As a result, the
TRD ages for most of the samples from the North China Craton may re-
flect the mixing of different-generation sulfides generated by referti-
lization processes.

As a result, most of the peridotite xenoliths from the Central Zone,
including Hebi, Fushan, Fanshi, Yangyuan, Datong, Jining and Han-
nuoba localities are relatively fertile in compositions (Figs. 3–5) and
bear a resemblance to the “oceanic” lithosphere (Fan et al., 2000),
but they are likely the fragments of refertilized Archean lithospheric
mantle.

6.4. Constraints on the destruction of the NCC

The mineralogy, elemental and isotopic geochemistry of peridotite
xenoliths entrained in the Mesozoic and Cenozoic igneous rocks from
the NCC indicate that the present lithospheric mantle beneath the
Central Zone is highly heterogeneous, which is likely produced from
an Archean lithosphere by refertilization via multistage additions of
melt. The early-stage melt may be derived from recycled crustal ma-
terials, and the later-stage melt be mainly derived from the astheno-
sphere. The refertilization processes could mask, even totally
obliterate the Archean refractory signatures of parts of the litho-
sphere, and rejuvenate the Archean mantle by lowering the Re–Os
model ages of refertilized peridotites (Zhang et al., 2008, 2009; Xiao
and Zhang, 2011).

The peridotites from Fushan and Hebi in the central NCC are main-
ly refractory harzburgites with minor lherzolites (Fig. 2). Their ex-
tremely variable Sr–Nd isotopic ratios (Fig. 6) and Archean–
Paleoproterozoic TRD ages (Fig. 9) reflect low-degree modification of
the Archean lithospheric mantle beneath the central NCC. In contrast,
the peridotites from the Hannuoba and Jining in the northern margin
of the craton are almost fertile lherzolites (Fig. 5) with depleted Sr–
Nd isotopic compositions (Figs. 6 and 8) and Proterozoic–Phanerozoic
TRD ages (Fig. 9), indicating high-degree refertilization of the mantle
lithosphere (Tang et al., 2008; Zhang et al., 2009, in press). One peri-
dotite from Jining has radiogenic 87Sr/86Sr (up to 0.707, Fig. 6), likely
implying the modification of oceanic crust (Zhang et al., in press).
This is consistent with the observation of Santosh (2010) providing
evidence for imbrication of oceanic plate lithostratigraphy from the
Inner Mongolia suture zone (Fig. 1).



88

89

90

91

92

93

TRD (Ga)

T
M

A
 (

G
a) 2.0

2.5

3.0

3.5

1.5

1.0

0.5

95

0 0.5 1.0 1.5 2.0 2.5 3.0

O
liv

in
e 

F
o

TMA0 1 3

Sulfide

In basalt

In kimberlite

Eastern
BlockIn basalt

Central
Zone

Hebi

Hebi
Fushan
Fanshi
Datong
Yangyuan
Jining
Hannuoba

Reaction tre
nd

Melting tre
nd

Archean

North
margin

Phanerozoic Proterozoic

PM

Central
NCC

Sulfide, Hannuoba

In basalt, eastern
In kimber., eastern

Sulfide, Hebi

2

Fig. 9. Diagrams of TMA and Fo of olivine vs. TRD model ages of peridotite xenoliths and
in situ analyses of sulfides from the NCC. Inset shows histogram of the TMA ages.
Data sources in addition to this study: Hannuoba peridotites (Gao et al., 2002; Xia et
al., 2004; Zhang et al., 2009; Liu et al., 2011); Fushan, Datong and Hebi peridotites (Liu
et al., 2011); Jining (Liu et al., 2011; Zhang et al., in press); Fanshi and Yangyuan pe-
ridotites (Xu et al., 2008b; Liu et al., 2011); In situ ages of sulfides in Hannuoba and
Hebi peridotites (Zheng et al., 2007; Xu et al., 2008a); peridotite xenoliths entrained
in the Cenozoic basalts (Gao et al., 2002; Wu et al., 2003, 2006; Chu et al., 2009b) and
Paleozoic kimberlites from the NCC (Gao et al., 2002; Wu et al., 2006; Zhang et al., 2008;
Chu et al., 2009b).

138 Y.-J. Tang et al. / Gondwana Research 23 (2013) 130–140
Compared to the Hannuoba peridotites, the Yangyuan and Fanshi
xenoliths are mainly lherzolites with minor harzburgite, and have
enriched Sr–Nd isotopic compositions and Archean–Phanerozoic TRD
ages, implying relatively low-degree modification of the lithospheric
mantle. Therefore, the spatially petrologic and geochemical variations
of xenoliths suggest that the refertilization of ancient lithospheric
mantle by melt additions became stronger from the interior to the
north margin of the NCC (Zhang, 2009) (Figs. 2–9).

For the whole North China Craton, it experienced a series of
subduction/collision events, as evidenced by the Paleozoic to Triassic
Qinling–Dabie ultrahigh-pressure belt in south (Li et al., 1993), the
Tianshan–Inner Mongolia–Daxing'anling orogen in north (Xiao et
al., 2003; Zhang et al., 2003) and the Mesozoic–Cenozoic subduction
of Pacific plate in east. These events could intensively modify the
subcontinental lithospheric mantle by igneous refertilization via
multistage peridotite–melt reactions (Zhang et al., 2002, 2003; Xu
et al., 2008a; Zhang et al., 2009; Zhang et al., 2010a, 2010b; Tang
et al., 2011, 2012), leading to the highly heterogeneity of the mantle.
7. Conclusions

Mineral element and Sr–Nd isotopic compositions of the perido-
tite xenoliths from the Cenozoic Hebi basalts in the Central Zone of
the NCC, coupled with previously published petrologic and isotopic
data of mantle xenoliths from the eastern NCC, allow us to draw the
following conclusions:

(1) The Hebi harzburgite xenoliths are refractory in mineral com-
positions and highly variable in mineral Sr–Nd isotopic compo-
sitions, ranging from MORB-like to EM1-type mantle. They are
the residues of Archean lithospheric mantle beneath this
region.

(2) The present lithospheric mantle beneath the Central Zone of
the NCC is highly heterogeneous in mineral and geochemical
compositions, likely produced by refertilization via multiple
additions of melts.

(3) The refertilization of the lithospheric mantle became stronger
from the interior to the margin of the craton, which was closely
related to multiple subduction/collision events of circum-
craton plates.
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