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Studies of mantle xenoliths have confirmed that Archean subcontinental lithospheric mantle (SCLM) is highly
depleted in basaltic components (such as Al, Ca and Na) due to high-degree extraction of mafic and ultramafic
melts and thus is refractory and buoyant, which made it chronically stable as tectonically independent units.
However, increasing studies show that ancient SCLM can be refertilized by episodic rejuvenation events like
infiltration of upwelling fertile material. The North China Craton is one of the most typical cases for relatively
complete destruction of its Archean keel since the eruption of Paleozoic kimberlites, as is evidenced by a dra-
matic change in the compositions of mantle xenoliths sampled by Paleozoic to Cenozoic magmas, reflecting
significant lithospheric thinning and the change in the character of the SCLM. The compositional change has
been interpreted as the result of refertilization of Archean SCLM via multiple-stage peridotite-melt reactions,
suggested by linear correlations between MgO and indices of fertility, covariations of Al2O3 with CaO, La/Yb,
87Sr/86Sr, 143Nd/144Nd, 187Os/188Os and Re-depletion ages (TRD), high Re abundances, scatter in Re–Os isotopic
plot, variable in situ TRD ages of sulfides, and correlation between TRD ages and olivine Fo of peridotite xenoliths
in Paleozoic kimberlites and Cenozoic basalts on the craton.
By integrating major and trace element, Sr, Nd and Os isotopic compositions of peridotite xenoliths and oro-
genic massif peridotites from the continents of Europe, Asia, America, Africa and Australia, together with pre-
vious studies of petrology and geochemistry of global peridotites, we suggest that (1) refertilization of cratonic
and circum-cratonic lithospheric mantle is widespread; (2) Archean SCLM worldwide has experienced
a multi-stage history of melt depletion and refertilization since segregation from the convecting mantle;
(3) cratonic SCLMmay bemore susceptible to compositional change caused by refertilization than is generally
assumed; (4) the original character of much Archean cratonic mantle has been partly overprinted, or even
erased by varying degrees of refertilization, which may play a key role in the rejuvenation and erosion of
the SCLM beneath the Archean cratons.
Due to the refertilization of ancient SCLM, (1) many published whole-rock Re-depletion ages cannot repre-
sent the formation ages of peridotites, but the mixtures of different generations of sulfides. Thus, the chro-
nological significance of the Re–Os isotopic composition in individual peridotite should be cautiously
interpreted; (2) many kimberlite- and intraplate basalt-borne lherzolite xenoliths, with major element
compositions close to primitive mantle, may be the fragments of the ancient SCLM, strongly refertilized
by infiltration of asthenosphere-derived melts, rather than newly-accreted SCLM. Consequently, new accre-
tion of SCLM beneath ancient cratons such as the North China Craton may be less than was previously
assumed.

© 2013 Elsevier B.V. All rights reserved.
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1. Introduction

The formation and evolution of subcontinental lithospheric mantle
(SCLM) is critical to understanding the processes responsible for the
development of Earth's continents. The SCLM is depleted in basaltic
components owing to high degrees of partial melting (extraction of
basaltic melt) of mantle peridotites (Frey and Green, 1974; Jordan,
1975, 1988; Boyd et al., 1985; Frey et al., 1985; Pollack, 1986; King,
2005; Griffin et al., 2009; Aulbach, 2012; Herzberg and Rudnick,
2012). Cratonic mantle most likely formed as residues after about
30% melting of ambient mantle at potential temperatures of 1500–
1600 °C in the Archean. These conditions compare with about 7%
melting to produce modern mid-ocean ridge basalt (MORB) at a po-
tential temperature of 1350 °C. When melting is hot and extensive,
the primary magmas are FeO-rich and these leave behind residues
that are FeO-poor. Extensive melting also depletes the residues in
CaO and Al2O3, and the combined effects of low FeO, CaO and Al2O3

makes them buoyant (Herzberg, 2004; Herzberg et al., 2010).
There is a secular evolution from depleted Archean mantle

(Mg-rich), represented by the peridotite xenoliths in the African and
Siberian kimberlites, to more fertile Phanerozoic mantle. Thus, newly
formed SCLM, as represented by the peridotite xenoliths in some in-
traplate basalts, has become progressively less depleted fromArchean,
through Proterozoic to Phanerozoic time, in terms of Al, Ca and other
basaltic components (Boyd, 1989; Boyd et al., 1997; Griffin et al.,
1998a, 1999a, 2003a, 2009; O'Reilly et al., 2001). This is displayed by
a large database of xenoliths and xenocrysts showing that the SCLM
stabilizing during different geologic eons has distinctly different
mean compositions that are broadly correlatedwith the tectonothermal
ages of the crust (Griffin et al., 1998a, 1999a).

Archean SCLM is distinctive in containing significant proportions
of refractory harzburgites with minor lherzolites (Herzberg, 2004)
and highly refractory dunites (Bernstein et al., 2006, 2007), marking
the most significant difference between Archean SCLM and that
beneath younger terranes (Griffin et al., 1999a). The compositional
variations significantly contribute to the difference in the density
of SCLM of different ages. Mean density increases significantly from
Archean through Proterozoic to Phanerozoic SCLM (Griffin et al.,
1998a, 1999a, 2003a, 2009; O'Reilly et al., 2001). Thus, Archean litho-
sphere is highly buoyant and cannot be delaminated through gravita-
tional forces alone. The buoyancy, as well as the refractory nature
of Archean SCLM, offers a simple explanation for the thickness and
longevity of Archean lithospheric keels (Jordan, 1988).

Archean and Proterozoic SCLM is forever unless it is physically
disrupted (e.g. rifting, thinning and displacement) with associated
thermal and chemical erosion (metasomatism) (O'Reilly et al., 2001).
Changes tracked in the SCLM in several regions, such as the Wyoming
craton (Eggler and Furlong, 1991) and the North China Craton (Fan
and Menzies, 1992), show that Archean mantle can be transformed
by mechanical destruction (lithospheric thinning and rifting) and
refertilized (chemical re-enrichment) by episodic infiltration of up-
welling fertile material (O'Reilly et al., 2001; Foley, 2008; Griffin et al.,
2009; Zhang et al., 2009a). The term “refertilization” is commonly
used to describe a phenomenon occurringwithin the lithospheric man-
tle asmetasomatic fluids/melts continually percolate through this layer
and modify its composition (Griffin et al., 2009). Thus, refertilization
means the chemical re-enrichment of originally depleted protoliths by
introduction of fluids/melts via metasomatism or peridotite-melt/fluid
reactions. The percolating fluids/melts were rich in Fe, Ca, Al, Na and
incompatible trace elements and derived from the asthenosphere or
recycled crust. Refertilization of a depleted peridotite could be linked
to heating, partial melting and melt migration on a scale of kilometers,
related to asthenospheric upwelling (Griffin et al., 2009 and references
therein).

Although cratons, the ancient continental nuclei characterized by
tectonic inactivity, thick SCLM and low heat flow, are stable as tecton-
ically independent units for at least the past 2 billion years, they have
experienced episodic rejuvenation events throughout their history
(Foley, 2008 and references therein). Is the process of refertilization
of depleted Archean mantle identified in previous studies a common
phenomenon? In other words, did most Archean SCLM around the
world undergo the process of refertilization?

In order to answer these questions, wewill summarize and analyze
critical evidence for refertilization of cratonic and circum-cratonic
lithospheric mantle worldwide by integrating the existing data, in-
cluding major and trace element, Sr, Nd and Os isotopic compositions
of mantle peridotite xenoliths and orogenic massif peridotites. Firstly,
the North China Craton will be selected to represent the typical region
for the destruction of its Archean keel and the critical evidence for
refertilization of the SCLM beneath the craton will be analyzed in
detail. Then, advances in petrology and geochemistry of mantle peri-
dotites from other cratonic and circum-cratonic regions worldwide
(Africa, America, Siberia, Australia and Europe; Fig. 1)will be reviewed
and comprehensively compared with those of the North China Craton.
The integrated results suggest that refertilization of ancient SCLM is
widespread and that the original character of Archean cratonicmantle
has been transformed by varying degrees of refertilization, leading to
the rejuvenation and erosion of ancient mantle.

2. Refertilization of Archean mantle beneath the North
China Craton

The North China Craton is one of the major continental blocks in
eastern Eurasia (Fig. 1), preserving Archean crustal remnants as old
as 3.8 Ga (Liu et al., 1992). The lithosphere of the craton was cold,
thick (>200 km), refractory and typically Archean craton in chemical
composition during the early Paleozoic, as is proved by extensive
studies of peridotite xenoliths, mineral xenocrysts and diamond inclu-
sions in the Mid-Ordovician diamondiferous kimberlites (Chi et al.,
1992; Dobbs et al., 1994; Meyer et al., 1994; Chi and Lu, 1996; Wang
et al., 1998; Wang and Gasparik, 2001; Zheng et al., 2001; Gao et al.,
2002;Wu et al., 2006; Zhang et al., 2008a; Chu et al., 2009). In contrast,
the Tertiary basalts on the craton sampled a hot, thin (b120 km),
fertile and relatively young lithosphere, showing characteristics simi-
lar to “oceanic”mantle (Song and Frey, 1989; Fan and Menzies, 1992;
Griffin et al., 1992, 1998b; Tatsumoto et al., 1992; Menzies et al., 1993;
Menzies and Xu, 1998; Xu et al., 1998; Zheng et al., 1998, 2005, 2006a;
Fan et al., 2000; Xu, 2001; Rudnick et al., 2004; Chu et al., 2009; Zhang
et al., 2009a, 2010; Tang et al., 2012). These observations reflect a dra-
matic change in physical property and chemical composition of the
SCLM beneath the North China Craton during the intervening time in-
terval. Briefly, the Archean SCLM has been considerably destroyed and
a relatively young SCLM has formed beneath the North China Craton
since the Paleozoic (Griffin et al., 1992, 1998b; Menzies et al., 1993;
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Xu, 2001; Tang et al., in press and references therein). The
ever-increasing investigations on the mechanisms responsible for
the great lithospheric thinning and the dramatic change in chemical
composition of the SCLM, such as the delamination model (Gao et
al., 1998, 2004; Wu et al., 2003; Xu et al., 2006, 2008a; Chu et al.,
2009), the thermo-mechanical erosion model (Menzies et al., 1993;
Xu, 2001; Xu et al., 2004a,b, 2009; Huang et al., 2012), the replacement
model (Zheng et al., 2001, 2005, 2006a, 2007; Zheng, 2009), and the
progressive melt modification model (Zhang et al., 2002, 2003, 2007a,
2009a, 2010; Zhang, 2005; Tang et al., 2008, 2011, 2012; Xu et al.,
2008b), now make “the destruction of the North China Craton” a very
hot topic (Zhu et al., 2011). However, the primary issues such as the
mechanism and processes of the transformation of the SCLM are yet
to be well constrained.

The proposed models have distinct implications for the lithospheric
thinning and compositional change of the North China Craton (Menzies
et al., 2007;Wu et al., 2008; Zhang et al., 2009a). Lithospheric delamina-
tion is the foundering of dense lithosphere into less dense astheno-
sphere (Kay and Kay, 1993). As SCLM is intrinsically less dense than
underlying asthenosphere due to compositional differences, a critical
amount of shortening is required. Crustal shortening and thickening
may result in a crustal root that becomes denser than the SCLM
and should delaminate with it (Kay and Kay, 1993). The effects of de-
lamination can explain the rapid stress change and intense tectonic
reactivation, and profound changes in crustal and mantle-derived
magmatism of the North China Craton (Gao et al., 1998, 2004; Wu
et al., 2003; Xu et al., 2006, 2008a). As the dynamical model shows,
the result of lithospheric delamination should be the removal of SCLM
and a portion of lower crust. If the delamination is the right mechanism
for the lithospheric thinning of the North China Craton, the present
SCLM must be young, likely Mesozoic as the lithospheric thinning
mainly occurred during the Mesozoic (Zhu et al., 2012 and references
therein) and the present SCLM should form from upwelling of hot
asthenosphere at the base of the crust and cooling subsequent to the
lithospheric thinning. However, the published Re–Os isotopic data for
Cenozoic basalt-hosted xenoliths show a large variation of ages ranging
from Archean to Cenozoic (Gao et al., 2002; Wu et al., 2003, 2006;
Zheng et al., 2007; Xu et al., 2008b,c; Chu et al., 2009; Zhang et al.,
2009a; Liu et al., 2011) and suggest the persistence of ancient SCLM
(Rudnick et al., 2006), inconsistent with the expectation of the delami-
nationmodel. Chen et al. (2013) argued against the delaminationmodel
based on the new evidence fromMesozoic high-Mg dioritic rocks in the
North China Craton: the euhedral overgrowths of high-Ca plagioclase
and high-Mg pyroxene over low-Ca plagioclase and low-Mg pyroxene,
respectively, and highly radiogenic Os isotopic compositions, reflecting
a process of magmamixing between siliceous crustal melts and basaltic
magma from metasomatized mantle.

The model of coupled thermo-mechanical and chemical erosion
(Xu, 2001) has been considered as an important mechanism to thin
the lithosphere. The lithospheric thinning may proceed with gradual
upward migration of the lithosphere–asthenosphere boundary. Alter-
natively, the thinning could proceed in the way that the old SCLMwas
penetrated and desegregated by hot mantle materials which rise
along lithospheric shear zones and spread like mushroom clouds
(Xu, 2001). In this case, the remains of SCLM should have Archean
ages, as the SCLM prior to its thinning beneath the North China Craton
has Archean ages (Gao et al., 2002; Wu et al., 2006; Zhang et al.
2008a; Chu et al., 2009). As a consequence, the SCLM is stratified with
old lithosphere overlying newly-formed lithosphere mantle (Griffin
et al. 1998b; Menzies and Xu, 1998; Xu et al., 2004a). Similarly, the re-
placement model (Zheng et al. 2001) is also based on the lithosphere–
asthenosphere interaction that can modify the SCLM roots of ancient
cratons and lead to their replacement by more fertile material (Griffin
et al., 1992, 1998a,b; Pearson, 1999a,b; O'Reilly et al., 2001). The
lithospheric replacement appears to be a consequence of mechanical
rifting, providing conduits of upwelling asthenospheric material, and
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the newly-accreted lithospheric mantle could be heterogeneously
distributed (Zheng et al., 2001). Both the thermo-mechanical erosion
and emplacement models can well explain the coexistence of old and
young SCLM. If they are themainmechanisms responsible for the litho-
spheric thinning, the present SCLM should have two peaks of Archean
and Mesozoic ages due to the large-scale thinning in the Mesozoic
(Zhang et al., 2009a). However, the present-day SCLM, sampled as
xenoliths by the Cenozoic basalts, has a continuity of ages fromArchean
to Cenozoic (Tang et al., 2013, in press and references therein), indicat-
ing that the two models are not the main mechanisms for the litho-
spheric thinning of the North China Craton. In addition, the two
models cannot well explain the compositional changes of the relics of
Archean SCLM (Zhang et al., 2009a).

The progressive melt modification model (Zhang et al., 2002,
2007a, 2008a, 2009a, 2010; Zhang, 2005; Xu et al., 2008b) suggested
that old refractory SCLM was transformed to young fertile mantle
through melt-rock reaction. This model predicts that the present-day
SCLM should have a broad spectrum of ages and compositions. Thus,
it can explain the continuity of ages and rapid compositional change
of the SCLM (Zhang et al. 2002, 2003, 2007a,b, 2009a; Zhang, 2005).
Refertilization of the SCLM by peridotite-melt reactions is believed
to be a key point to destroy the North China Craton because it will
change the chemical composition, thermal regime and physical prop-
erty of the SCLM, based on the recent reviews (Gao et al., 2009; Xu
et al., 2009; Zhang, 2009; Zheng, 2009; Zheng and Wu, 2009). Conse-
quently, here we will focus our discussion primarily on the evidence
for refertilization of the Archean SCLM, attempting to expand on the
previous studies by integrating major and trace element, Sr, Nd and
Os isotopic data of peridotite xenoliths from the craton according to
our ever increasing understanding of the SCLM evolution of the
North China Craton and other cratons worldwide.

2.1. Major and trace element evidence

As there are large amounts of whole-rock and sulfide Re–Os data of
peridotite xenoliths from theHannuoba locality, a Cenozoic basalt high-
land covering over 1700 km2 (Chen et al., 2001) of the northern North
China Craton (Fig. 1), the Hannuoba basalt-hosted xenoliths are set
apart from the other North China Craton xenoliths to show the geo-
chemical variations of peridotite xenoliths from the individual locality.
It is commonly believed that kimberlite-hosted peridotite xenoliths
are representative of ancient cratonic SCLM, while basalt-hosted xeno-
liths represent the samples of Phanerozoic mantle (Boyd, 1989; Griffin
et al., 2009 and references therein). Thus, the xenoliths data in this
paper are separated into kimberlite- versus basalt-hosted groups.

The peridotite xenoliths from the North China Craton show
considerable variation in major element compositions from fertile
(close to primitive mantle) to highly refractory (with MgO content
higher than 48%; Fig. 2). Some refractory peridotites, in particular,
Paleozoic kimberlite-borne xenoliths, have compositions approaching
the average cratonic peridotite from the Kaapvaal craton and fall in
the compositional fields for cratonic peridotites (Boyd, 1989; Griffin
et al., 1999a; Lee and Rudnick, 1999) and melting residues of fertile
peridotite (Herzberg, 2004). The peridotite xenoliths from the North
China Craton define a strong trend of increasing Al2O3 content with
increasing CaO content (Fig. 3). The variations in major oxides are
observed not only in the peridotite samples from the individual
Hannuoba locality, but also in those either hosted by other Cenozoic
basalts or hosted by the Paleozoic diamondiferous kimberlites on
this craton. Many of the peridotite xenoliths display SiO2 enrichment
relative to the residues of fertile peridotite (Fig. 4). There is a roughly
negative correlation between Al2O3 and La/Yb ratios (Fig. 5).

It is known that the extraction of mafic to ultramafic melts from
a fertile peridotite with a primitive mantle composition will result
in a residue with depletion in basaltic components such as Al2O3,
CaO, TiO2 and Na2O (e.g., Herzberg, 2004). Abyssal peridotites, most
alpine and ophiolite peridotites, as well as many peridotite xenoliths
from cratonic margins fall along an oceanic depletion trend (Fig. 3),
reflecting melt extraction from fertile pyrolitic mantle at relatively
low pressures (Boyd, 1989). Thus, negative correlations between
whole-rock MgO (Fig. 2) or Mg# (Fig. 3) and indices of fertility (such
as Al2O3 and CaO) are traditionally interpreted as the results of
melt extraction (Frey and Green, 1974; Boyd and Nixon, 1978; Kurat
et al., 1980; Stosch and Seck, 1980; Boyd and Mertzman, 1987; Boyd
et al., 1997). However, the approximately linear correlation between
the major oxide contents is more a result of refertilization of originally
refractory residues than a trend expected of melt extraction of mantle
peridotites because model residue compositions formed by fractional
melting of fertile peridotite (Niu, 1997; Herzberg, 2004) define hyper-
bolic trends on the plots of major oxides (Fig. 2), whereas newly-
formed peridotites will display a linear correlation between MgO
and Al2O3 or CaO (Niu, 1997). Thus, the linear correlations between
MgO and indices of fertility observed in these peridotites indicate
refertilization process (Griffin et al., 2009; Zhang, 2009), as is initially
proposed to explain the texture and chemical trends observed in
some oceanic peridotites, which cannot be sufficiently explained by
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from the North China Craton. Mg#=100×molar Mg/(Mg+Fe). Oceanic depletion
trend shows expected compositions (refractory) of residues after progressive melt
extraction from fertile Primitive Mantle compositions (Boyd, 1989). Refertilization
trend mimics the oceanic trend, but runs in the opposite direction. The correlations be-
tween the compositions of the peridotite xenoliths also reflect a similar refertilization
process (Le Roux et al., 2007; Griffin et al., 2009). Age fields for Archean, Proterozoic
and Phanerozoic are from O'Reilly et al. (2001). Other data sources are the same as
those identified in Fig. 2.
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simple batch and fractional melting models (Elthon, 1992; Niu and
Hekinian, 1997; Niu, 1997, 2004; Hellebrand et al., 2002; Barth et al.,
2003; Brunelli et al., 2006; Seyler et al., 2007).
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Since the elements Ca and Al are removed from the mantle residue
duringmelt extraction, “typical” Archean SCLM estimated from garnet
xenocrysts and xenolith suites is highly depleted and refractory
(Griffin et al., 2009), with CaO and Al2O3 contents less than 1 wt.%
and 1.5 wt.%, respectively (Fig. 3). In contrast, most Proterozoic and
Phanerozoic SCLM are only moderately depleted compared with
primitive mantle (O'Reilly et al., 2001; Beyer et al., 2006; Griffin et
al., 2009). However, refertilization of an originally depleted source
by melts rich in basaltic components can produce essentially the
same trend by addition of Al, Ca and Fe to the peridotites, crystallizing
clinopyroxene (cpx) at the expense of olivine and orthopyroxene
(opx) (Griffin et al., 2009 and references therein). Therefore, the linear
correlation between whole-rock Al2O3 and CaO contents in the peri-
dotites, a common phenomenon inmantle peridotite xenoliths world-
wide (Boyd, 1989; Boyd et al., 1997; Griffin et al., 1999a, 2003a, 2009),
reflects refertilization trend that parallels the “depletion trend”, but
runs in the opposite direction (Fig. 3).

According to the comprehensive mass-balance petrological model
of Herzberg (2004), many of the peridotites from the North China
Craton fall out of the fields for melting residues of fertile peridotite
due to their high contents of Al2O3 (Fig. 2) and SiO2 (Fig. 4),
exhibiting too enrichment in opx to be residues (Fig. 2). Therefore,
the observed trends between major oxide contents of these perido-
tites reflect refertilization rather than simple depletion, which is
also evidenced by a number of petrologic and geochemical observa-
tions that many peridotite xenoliths appear to have had opx added
during melt-rock reaction or some other processes (Kelemen et al.,
1992, 1998; Herzberg, 1993; Griffin et al., 1999b).

The (La/Yb)N ratios in the peridotite xenoliths from the North
China Craton (Fig. 5) are apparently higher than that of primitive
mantle and deviate from the expected trend if these xenoliths are
the melting residues of primitive mantle. Therefore, the variations
in major and trace element contents in these peridotites were the
results of refertilization. This inference is also supported by the data
of Sr, Nd and Os isotopes in these peridotites (see below).

2.2. Sr–Nd isotopic evidence

The Sr and Nd isotope compositions of the peridotite xenoliths
(whole-rock and cpx data) from the North China Craton show a
large variation, ranging from the character of depleted mantle to
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enriched mantle (Fig. 6). The isotopic ratios, in general, correlate
with whole-rock Al2O3 contents; fertile peridotites (with high Al2O3

contents) are higher in 143Nd/144Nd ratios and lower in 87Sr/86Sr
ratios than refractory samples (low in Al2O3). This correlation was
previously observed in the Hannuoba peridotite xenoliths (Song and
Frey, 1989; Rudnick et al., 2004; Zhang et al., 2009a) and was ascribed
to ancient melt depletion followed by recent metasomatism by a fluid
or melt having an evolved isotopic signature (Rudnick et al., 2004).
However, this explanation cannot well account for the absence of
correlation 1/Sr and 87Sr/86Sr and the scatter on the plots of Sr–Nd
isotopes versus Al2O3, and thus requires additional process (Rudnick
et al., 2004).

Partial melting will result in the decrease of Rb/Sr ratio but in-
crease Sm/Nd ratio of a peridotite, refractory peridotites (low Al2O3)
thus are lower in Rb/Sr and higher Sm/Nd than primitive mantle. As
a result, refractory peridotites should be lower in 87Sr/86Sr and higher
143Nd/144Nd ratios than fertile peridotites and primitive mantle, which
is completely opposite to the observation from these peridotites (Fig. 6).
Therefore, the correlations between Sr–Nd isotopic compositions and
whole-rock chemical compositions are hardly consistent with residues
evolved only from partial melting of peridotites with primitive mantle
composition, possibly reflecting different degrees of refertilization
of originally refractory peridotite precursors through reaction with
asthenosphere-derived melts (Griffin et al., 1999b, 2003a, 2004a,b;
2009; Xu et al., 2003, 2008b; Rudnick et al., 2004; Zheng et al., 2007;
Zhang, 2009).

Based on previous studies of the peridotite samples from the
North China Craton (Tang et al., 2008, 2011, 2013; Xu et al., 2008b,c,
2010; Zhang et al., 2009a, 2012; Liu et al., 2011), we suggest that
most of these peridotite xenoliths have been recently refertilized
by asthenosphere-derivedmelts after early partial melting. The perco-
latingmelts derived from asthenosphere should be similar to depleted
mantle in their low 87Sr/86Sr and high 143Nd/144Nd ratios, while re-
fractory peridotites have evolved Sr and Nd isotopic compositions
(EM1-like) due to ancient enrichment events likely related to the
Paleoproterozoic subduction/collision between the eastern and west-
ern blocks of the North China Craton (Zhang et al., 2004; Wang et al.,
2006; Xu et al., 2008c; Tang et al., 2008, 2011, 2013). Therefore, recent
refertilization of the refractory peridotites by reaction with astheno-
spheric melts led to the decrease of 87Sr/86Sr ratios and the increase
of 143Nd/144Nd ratios associated with the increase of Al2O3 in the
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relatively fertile peridotites. The large variations in Sr–Nd isotopic
compositions and Al2O3 contents (Fig. 6) thus likely reflect the varying
degrees of refertilization. Many cases of transformation of highly refrac-
tory lithospheric mantle (subcalcic harzburgites) via refertilization,
producing relatively fertile peridotites (lherzolites) and pyroxenites
have been well documented (Stiefenhofer et al., 1997; Mukasa and
Shervais, 1999; Pearson, 1999a; Lenoir et al., 2001; Griffin et al.,
2003b, 2005; Carlson et al., 2004; Müntener et al., 2004; Beyer et al.,
2006; Raffone et al., 2009). It should be noted that some peridotite xe-
noliths, with fertile chemical compositions (e.g., close to primitiveman-
tle in Al2O3 content; Fig. 6) andMORB-like Sr–Nd isotopic compositions,
could represent the newly-accreted lithospheric mantle, as is recog-
nized beneath the eastern North China Craton (Griffin et al., 1998b;
Menzies and Xu, 1998; Xu et al., 1998; Zheng et al., 1998, 2005; Fan et
al., 2000; Xu and Bodinier, 2004; Zhang et al., 2010). However, it is
still poorly established whether these fertile lherzolites actually repre-
sent fragments of the refertilized mantle peridotites, or simply parts
of the new accretion of lithospheric mantle, due to their indistinguish-
able characteristics of petrology and geochemistry, similar to those of
“oceanic” mantle peridotites.

2.3. Re–Os isotopic evidence

The Re–Os isotopic system is considered to be a reliablemeans to de-
termine the age of melt extraction of mantle peridotites (e.g., Walker
et al. 1989). Osmium is a highly compatible element and is preferential-
ly retained in the mantle during partial melt generation. Rhenium
is moderately incompatible and enters the melt (it is worth noting
that Re is highly compatible in sulfides; Griffin et al., 2004a; Aulbach
et al., 2009). Thus, melt depletion generates a low Re/Os ratio in the
residue which, with time, through the decay of 187Re (parent) to
187Os (daughter), evolves to unradiogenic 187Os/188Os ratios compared
to those of the contemporaneous undepletedmantle (e.g., Walker et al.,
1989; Shirey and Walker, 1998; Pearson, 1999a; Meisel et al., 2001).
Thus, Os isotope systematics for cratonic peridotites appear to be dom-
inantly influenced by the ancient depletion events that caused them to
separate from the convecting mantle. In contrast, both parent and
daughter elements in other radiogenic systems (e.g. Rb–Sr and Sm–

Nd) are strongly concentrated in the melt during mantle melting and
these systems are susceptible to later enrichment events (Pearson,
1999a and references therein). Therefore, the Re–Os system has proven
to be particularly useful in tracing the geochemical evolution of mantle
rocks and in defining the chronology of mantle evolution (Walker et al.,
1989; Shirey and Walker, 1998; Pearson, 1999a; Peslier et al., 2000b;
Saal et al., 2001; Pearson et al., 2003; Carlson, 2005; Reisberg et al.,
2005).

At first, the Re–Os system was considered to be immune from dis-
turbance caused bymetasomatism due to low Os contents in common
metasomatic agents (Walker et al., 1989; Handler et al., 1997; Shirey
andWalker, 1998; Pearson, 1999a; Reisberg et al., 2005). Many recent
studies, however, have provided evidence that the Re–Os system in
mantle peridotites can be disturbed and even totally resetted by
late-stage melt percolation and peridotite-melt reaction, especially
when reaction preceded eruption (when a portion of the mantle was
carried to the surface as a xenolith) by large time intervals (Brandon
et al., 1996; Pearson et al., 1998; Chesley et al., 1999; Burton et al.,
2000; Becker et al., 2001; Alard et al., 2002; Widom et al., 2003;
Zhang et al., 2008a, 2009a, 2012; Ackerman et al., 2009; Xiao and
Zhang, 2011).

Re–Os mantle model age (TMA) is used to constrain the time of
melt depletion and metasomatic processes involving sulfide (such
as Cu, Fe and Ni sulfides) melts. TMa ages are based on the extrapola-
tion of the Os isotope composition of a peridotite to the chondritic
evolution curve, using the measured Re/Os ratio of the sample
(Walker et al., 1989; Shirey and Walker, 1998). Nevertheless, TMA

may be future ages or ages older than the true age of a melt extraction
because Re may be added to or removed from a peridotite by the pro-
cesses of mantle metasomatism and interactions between peridotite
xenolith and host rocks (Shirey and Walker, 1998; Pearson, 1999b;
Gao et al., 2002; Wu et al., 2003; Griffin et al., 2004a; Carlson, 2005;
Wu et al., 2006; Xu et al., 2008b; Zhang et al., 2008a). The time of
Re depletion (TRD) age is by definition the minimum age of Re deple-
tion assuming zero Re/Os in the sample (i.e. complete Re depletion).
TRD represents the time of separation of a peridotite from a chondritic
reservoir (Walker et al., 1989; Shirey and Walker, 1998). TRD ages ap-
proach the true age of melting for highly depleted peridotites because
Re is almost completely removed from the residue at high degrees of
melting. Whereas, the TRD age will underestimate the true age of a
melt extraction event for relative fertile peridotites and those affected
by substantial Re or Os additionwell prior to xenolith eruption (Shirey
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andWalker, 1998; Brandon et al., 1999; Burton et al., 1999; Chesley et
al., 1999; Pearson, 1999a; Burton et al., 2000; Becker et al., 2001, 2004;
Saal et al., 2001; Büchl et al., 2002; Schmidt and Snow, 2002; van
Acken et al., 2008; Zhang et al., 2008a, 2009a).

In a lithospheric volume that has undergone melt depletion,
followed by episodic refertilization events, sulfides in mantle perido-
tites may record highly variable Re–Os model ages, reflecting the
reaction between “old” sulfides (residual after melt depletion) and
“young” sulfides (interstitial sulfides newly produced by melt/
fluid-peridotite reaction), which has been demonstrated in previous
studies (Pearson et al., 1999, 2002; Alard et al., 2002; Griffin et al.,
2002, 2004a; Aulbach et al., 2004; Xu et al., 2008b; Zhang et al.,
2008b, 2009a, 2012; Harvey et al., 2010). Interstitial sulfides, preserved
along silicate grain boundaries, are lower in Os and higher in Re concen-
tration than “old” sulfides enclosed in silicate grains (Harvey et al.,
2011). Thus, the bulk-rock Re and Os budget will be controlled by
the Re–Os budget and proportions of the different generations of
sulfides. The latter are dependent on melt/rock ratios and the degree
of S-saturation of percolating melt because S-undersaturated melt can
dissolve some sulfides (Lorand et al., 2003; Reisberg et al., 2004;
Reisberg et al., 2005; Ackerman et al., 2009; Zhang et al., 2009a, 2012;
Xiao and Zhang, 2011). As a result, melt infiltration could significantly
change the Os isotopic compositions of peridotites due to the removal
of primary sulfides (unradiogenic 187Os/188Os) and subsequent precip-
itation of sulfides bearing radiogenic Os (e.g., Alard et al., 2005; Powell
and O'Reilly, 2007; Ackerman et al., 2009). Consequently, whole-rock
Os isotope compositions reflect the proportions of different generations
of enclosed and interstitial sulfides, which calls into question the signif-
icance of many published whole-rock “depletion ages” (Pearson et al.,
2002).

The Re–Os isotopic compositions of the peridotite xenoliths from
the North China Craton vary greatly, with 187Re/188Os ranging from 0
to 1.2 and 187Os/188Os from0.109 to 0.132 (Fig. 7).Most of the Paleozoic
kimberlite-borne peridotites except a few with varying Os isotopic
ratios have strongly unradiogenic isotopic compositions, consistent
with ancient Re-depletion (Archean TRD ages; Fig. 8). In contrast, the
xenoliths hosted by Cenozoic basalts show a large range of Os isotopic
compositions, from close to depleted mantle to primitive upper mantle
(PUM) as estimated from abyssal peridotites (Brandon et al., 2000)
and worldwide mantle xenoliths (Meisel et al., 2001). The 187Os/188Os
ratios roughly correlate with the 187Re/188Os and Al2O3 (Fig. 7). The
scatter in the data clearly requires more complex explanation than
simple one-stage Re-depletion model. For example, numerous samples
have bulk Re contents and 187Re/188Os ratios much higher than
the PUM, yet fairly unradiogenic Os, indicating recent Re addition
(Chesley et al., 1999; Meisel et al., 2001) at low melt/rock ratios or Os
addition at high melt/rock ratios (Becker et al., 2001; Reisberg et al.,
2004). The positive correlation between 187Os/188Os and Al2O3 is
traditionally interpreted as the result of radiogenic ingrowth since an
ancient episode of melt extraction (Reisberg and Lorand, 1995;
Reisberg et al., 2004). However, this hypothesis does not account
for the negative correlation of 87Sr/86Sr and the positive correlation of
Fig. 9. Plots of Al2O3 (wt.%) and CaO (wt.%) versus MgO (wt.%) for the mantle peridotites
(Press et al., 1986; Ionov and Wood, 1992; Ionov et al., 1992a,b, 1993a,b, 1994, 1995a
2004; Boyd et al., 1997; Ionov, 2007, 2010); Australian peridotites (Frey and Green, 1974
1988; Chen et al., 1989; Frey et al., 1989; Yaxley et al., 1991; Canil et al., 1994; Becker,
1998; Meisel et al., 2001; Alard et al., 2002); European peridotites (Paul, 1971; Kurat et al.,
et al., 1992, 2002, 2003; Reisberg and Lorand, 1995; Vaselli et al., 1995, 1996; Becker, 199
2001; Alard et al., 2002; Ionov et al., 2002; Femenias et al., 2003; Beyer et al., 2004, 2006; M
2007; Le Roux et al., 2007; Piccardo et al., 2007; Tessalina et al., 2007; van Acken et al., 2
peridotites (Frey and Prinz, 1978; Stosch and Seck, 1980; Ehrenberg, 1982; Feigenson, 19
1995; Bernstein et al., 1998; Schmidberger and Francis, 1999; Stern et al., 1999; Lee et
et al., 2004, 2007; Downes et al., 2004; Kopylova and Caro, 2004; Lucassen et al., 2005; Sch
peridotites (Carswell and Dawson, 1970; Nixon and Boyd, 1973; Nixon et al., 1981; Boy
Winterburn et al., 1990; Boyd et al., 1993, 2004; Rudnick et al., 1993; Canil et al., 1994
et al., 2003, 2005; Simon et al., 2003, 2007; Griffin et al., 2004a; Reisberg et al., 2004; K
Other data sources and fractional melting grids are the same as in Fig. 2.
143Nd/144Nd with Al2O3. These covariations likely reflect incomplete
mixing (refertilization) of refractory harzburgites with asthenospheric
material during erosion of SCLM by upwelling asthenospheric mantle
(Saal et al., 2001; Bodinier andGodard, 2003; Zhang, 2009). It is possible
that some peridotites lying to the left hand side of the isochron of 3 Ga
(Fig. 7) have lost Re due to sulphides breakdown during eruption of the
xenoliths (Lorand, 1990) but this is hard to verify (Pearson, 1999a).

The Hannuoba peridotites have predominantly Proterozoic whole-
rock Re–Osmodel ages, resembling the Cenozoic basalt-borne perido-
tite xenoliths from other localities on the North China Craton (Fig. 8).
In contrast, the in situ TRD and TMA ages of sulfides in the Hannuoba
samples show a larger range, from Archean to Phanerozoic model
ages, than the whole-rock ages (from Proterozoic to Phanerozoic)
of the peridotites, strongly indicating that the whole-rock ages are
the mixing ages of different generations of sulfides (Pearson et al.,
2002; Xu et al., 2008b; Zhang et al., 2009a). The TRD ages of these
peridotites apparently correlate with whole-rock Al2O3 and olivine
Fo contents (Fig. 8). This correlation is traditionally explained as
melting trend because the high-degree partial melting of primitive
mantle (Boyd, 1975; Jordan, 1975; Pollack, 1986; King, 2005) resulted
in low Al2O3 and high olivine Fo. However, the above correlation also
reflects the possibility of reaction trend of a depleted residue with
asthenosphere-derived melts. The refertilization of peridotites could
lower the mean Fo of olivine (Griffin et al., 2005, 2009; Zhang,
2005) and result in the positive correlations between Re and Al2O3,
Yb and TiO2 contents in the peridotites from the North China Craton
(Zhang et al., 2009a), as is observed in the peridotites from the south-
ern Bohemian massif (Becker et al., 2001). Therefore, the covariations
of TRD ages with Al2O3 and olivine Fo contents suggest that the
mantle process that decreased the olivine Fo and increased the
Al2O3 in the xenoliths through refertilization meanwhile rejuvenated
the peridotites.

The xenoliths in the Paleozoic kimberlites have Archean Re–Os
isotopic ages, suggesting the existence of Archean SCLM beneath the
North China Craton during the Paleozoic (Gao et al., 2002; Wu et al.,
2006; Zhang et al., 2008a; Chu et al., 2009). In contrast, the peridotite
xenoliths in the Cenozoic basalts have dominantly Proterozoic TRD
ages, and only a few xenoliths from the eastern part of the craton
have Phanerozoic TRD ages (Fig. 8). The latter could be the fragments
of the newly-accreted SCLM, as noted previously (Fan and Menzies,
1992; Xu et al., 1998; Zheng et al., 1998; Ying et al., 2006). Thus, the
observation that Archean model ages are rare in Cenozoic basalts re-
flect that nearly all the Archean SCLM has been replaced (Gao et al.,
2002; Wu et al., 2006; Chu et al., 2009) and/or modified (Xu et al.,
2008b; Zhang et al., 2008a, 2009a) by episodic additions of young
mantle materials beneath the North China Craton (Xiao et al., 2010;
Tang et al., 2011, 2012; Xiao and Zhang, 2011). Some basalt-hosted
xenoliths have whole-rock (Xu et al., 2008c) or in situ sulphide
(Zheng et al., 2007; Xu et al., 2008b) Archean TRD ages (Fig. 8), implying
the presence of Archean SCLM. However, the wide range of Os isotopic
ratios and TRD ages (Figs. 7 and 8) within sulfides from an individual
peridotite xenolith supports the model of SCLM refertilization (Xu et
from global ancient cratons and orogenic regions. Data sources: Siberian peridotites
,b, 1996, 2005a,b, 2006a,b; Ionov and Hofmann, 1995, 2007; Pearson et al., 1995b,
; Burwell, 1975; Wilkinson, 1975; O'Reilly and Griffin, 1987, 1988; Stolz and Davies,
1996; McBride et al., 1996; Handler et al., 1997, 2005; Eggins et al., 1998; Norman,
1980; Frey et al., 1985; Downes and Dupuy, 1987; Bodinier et al., 1988, 2004; Downes
6; Meisel et al., 1997, 2001; Zangana et al., 1999; Beccaluva et al., 2001; Becker et al.,
edaris et al., 2005; Ackerman et al., 2007, 2009; Bianchini et al., 2007; Cvetkovic et al.,
008; Mazzucchelli et al., 2009; Soustelle et al., 2009; Harvey et al., 2010); American
86; Roden et al., 1988; Liang and Elthon, 1990; Carlson and Irving, 1994; Nimz et al.,
al., 2000; Peslier et al., 2000a, 2002; Meisel et al., 2001; Irvine et al., 2003; Carlson
illing et al., 2005; Ntaflos et al., 2007; Rivalenti et al., 2007; Bjerg et al., 2009); African
d and Mertzman, 1987; Erlank et al., 1987; Harte et al., 1987; Menzies et al., 1987;
; Pearson et al., 1995a, 2004; Stiefenhofer et al., 1997; Meisel et al., 2001; Gregoire
uskov et al., 2006; Gibson et al., 2008; Raffone et al., 2009; Wittig et al., 2010a,b).
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al., 2008b). The effects of refertilization on mantle Re–Os isotopes have
been well documented for the peridotites from other regions of the
world (Pearson et al., 1999, 2002; Alard et al., 2002; Griffin et al.,
2002, 2004a; Aulbach et al., 2004; Harvey et al., 2010). Therefore, the
TRD ages of Proterozoic and Phanerozoic for most of the samples from
the North China Craton (Fig. 8) cannot represent the melt-extraction
ages of the peridotites, but are the mixtures of different-generation sul-
fides produced by refertilization of the SCLM.
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2.4. Key role of refertilization in the destruction of the North China Craton

As discussed above, the characteristics of major and trace element,
Sr–Nd and Re–Os isotopic compositions in the peridotite xenoliths
suggest that the SCLM beneath the North China Craton formed during
the Archean and experienced extensive refertilization. Episodic addi-
tions of melts resulted in the loss of Archean refractory signature of
the SCLM and rejuvenate the ancient SCLM by lowering the Re–Os
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model ages to intermediate between the original formation age and
the timing of the refertilization (Zhang et al., 2008a, 2009a).

Many case studies have reported textural or chemical evidence for
refertilization of peridotites, such as, the tectonically-emplaced perido-
tites in Oman (Godard et al., 2000), Horoman (Saal et al., 2001), Lherz
Maffis (Le Roux et al., 2007), western Alps (Müntener et al., 2004,
2010; Piccardo et al., 2007; Rampone et al., 2010) and the Western
Gneiss Region of western Norway (Beyer et al., 2006). It appears that
large-scale refertilization is specific of tectonically-emplaced, orogenic
peridotites. However, refertilization has also been observed in the pre-
viously depleted, Archean SCLM (see below).

Since the Paleozoic, the North China Craton has experienced a series
of circum-craton subduction/collision events, as evidenced by the Pa-
leozoic to Triassic Qinling-Dabie-Sulu ultrahigh-pressure belt in south
(Li et al., 1993; Ye et al., 2000), the Central Asian Orogenic Belt in
north (Xiao et al., 2003; Zhang et al., 2003) and the Mesozoic–Cenozoic
subduction of Pacific plate in east (Xu and Zhao, 2009; Zhu and Zheng,
2009). These events provided subducted-slab-derived fluids/melts
that significantlymodified the geochemical compositions and geophys-
ical characteristics of the SCLM (Menzies et al., 2007; Windley et al.,
2010; and references therein) and thus have been considered as the
key driving force for the transformation of the ancient SCLM during
the Mesozoic (Zhang et al., 2002, 2003, 2008a, 2009a, 2010; Chen and
Zhou, 2005; Yang et al., 2012; Tang et al., 2013). Extensive refertilization
and thinning of the SCLM by fertile material upwelling along breaks
and weak zones in the Archean root could be further strengthened
by the subduction of the Pacific plate since the Late Mesozoic (Zhu
et al., 2011, 2012; Xu et al., 2012; Zheng et al., 2012; Tang et al., in
press; and references therein). Accordingly, the SCLM has been
refertilized by multistage peridotite-melt reactions (Zhang, 2005,
2009; Tang et al., 2007, 2011, 2012; Zhang et al., 2007a,b,2009a, 2010,
2011a). Early-stagemelts might bemainly derived from recycled crust-
al materials because the Mesozoic modified SCLM have unradiogenic
Nd isotopic compositions (Guo et al., 2001; Xu, 2002; Zhang et al.,
2002, 2003, 2004; Yang et al., 2004; Wang et al., 2006). The infiltration
of crustal melts in the SCLM and reaction with peridotites have been
identified in xenocrysts, eclogite, pyroxenite and peridotite xenoliths
from the Mesozoic basaltic rocks (Xu et al., 2006, 2008a; Zhang et al.,
2002, 2003, 2004, 2007b, 2010, 2011b). In contrast, the melts during
the recent refertilization could be mainly derived from the astheno-
sphere, which has been addressed based on the characteristics of ele-
mental and isotopic compositions in the Cenozoic basalt-hosted
peridotite xenoliths.

Petrologic and geochemical signatures of the SCLMmodified bymelt
additions have been reflected by the basaltic rocks and deep-seated
xenoliths from northern (Zhang et al., 2003; Gao et al., 2004; Xu et al.,
2004a; Liu et al., 2005, 2010; Tang et al., 2007; Zheng et al., 2007; Xu
et al., 2008b), eastern (Guo et al., 2001; Zhang et al., 2002, 2009b,
2010, 2011a,b; Zhang, 2005, 2007; Ying et al., 2006; Xu et al., 2008a;
Xiao et al., 2010; Huang et al., 2012; Tang et al., 2012; Xu et al., 2012),
southern (Zheng et al., 2006b; Liu et al., 2012) and western (Xu et al.,
2005; Tang et al., 2006, 2008, 2011; Ying et al., 2007; Zhang et al.,
2012) portions of the North China Craton. Therefore, the refertilization
by episodic melt-peridotite reactions could be widespread in the
SCLM beneath the whole craton and thus be an important mechanism
for the rejuvenation and erosion of the Archean SCLM, leading to the
great transformation of the SCLM and the destruction of the North
China Craton.

3. Refertilization of SCLM worldwide

More than 2100 peridotite bulk rock analyses were compiled from
123 data sources in the literature. Among them, around 1800 analyses
are for major element compositions, and yet relatively small numbers
of analyses for Sr, Nd and Os isotopes because major and trace ele-
ment, Sr, Nd and Os isotopic compositions are not always analyzed
in the same sample or all samples in a suite. These peridotite samples
were firstly divided according to the geographic location (such as
Siberia, Australia, Europe, America and Africa), and then subdivided
according to tectonic environment (i.e. orogenic massif or volcanic
xenoliths) (Fig. 9).

3.1. Element correlations in peridotites

According to the original recognition (Boyd, 1989; Boyd et al., 1997),
Archean cratonic SCLM is represented by the peridotite xenoliths in
African and Siberian kimberlites, and Phanerozoic circumcratonic man-
tle is represented by the xenoliths in intraplate basalts. It is interesting
that some kimberlite-borne xenoliths from African, Siberian and Amer-
ican have relatively fertile compositions ofmajor oxides, approaching to
primitive mantle, and many xenoliths plot out of the grid for melting
residues of fertile peridotite (Herzberg, 2004) due to their relatively
low MgO and high Al2O3 contents (Fig. 9). These observations, com-
bined with the linear correlations among whole-rock Al2O3, CaO and
MgO contents (Fig. 9) and the strong trend of increasing CaO with
increasing Al2O3 content (Fig. 10), suggest that some portions of the
Archean SCLM worldwide have been refertilized to varying degrees as
noted above for the peridotites from theNorth ChinaCraton. In contrast,
the variation in major oxide contents (Figs. 9–11) in the kimberlite-
borne peridotite xenoliths from America and Africa is larger than that
from Siberia, suggesting that the American and African SCLM could
have been refertilized to a higher degree than the Siberian by the
eruption of the kimberlites, as is also evidenced by their Sr, Nd and Os
isotopic characteristics reviewed below.

The shallow SCLM beneath the western and central Europe expe-
rienced modification by interaction with melts/fluids according to
the extensive review of the petrology, major and trace element and
Sr–Nd isotopic geochemistry of peridotites from ultramafic xenolith
suites and tectonically emplaced ultramafic massifs (Downes, 2001).
The European peridotites show wide variation in chemical composi-
tions, similar to the other continental peridotites worldwide (Fig. 9).
The strongly linear correlations among Al2O3, CaO and MgO contents
in the peridotites (Figs. 9 and 10) suggest that the SCLM beneath the
Europe has been intensively refertilized, which is further proved by
the large range of SiO2 contents, showing excessive Si enrichment in
many of the peridotites (Fig. 11). The same conclusion can be also
fit for the Australian SCLM represented by the peridotite xenoliths
from Australia (Figs. 9–11). The only difference between the two
continents is that the European peridotites show larger variation in
their compositions than the Australian, possible reflecting higher
degrees of refertilization in the European SCLM than the Australian.

Low-Si (SiO2 b45%) peridotite xenoliths entrained in the kimberlites
from Siberia and southern Africa fall in the melting grid (Fig. 11) and
can be residues of melt extraction from primitive mantle, while
high-Si (SiO2 >45%) peridotites obviously deviate from the melting
grid and cannot be melting residues of primitive mantle because they
are too enriched in SiO2 (Kelemen et al., 1992, 1998; Herzberg, 2004).
This observation suggests that some of the kimberlite-hosted samples
are the refertilized, originally old and depleted mantle peridotites as
is evidenced by the early studies of petrology, elemental and isotopic
geochemistry of mantle peridotites (Smith and Boyd, 1987, 1992;
Griffin et al., 1989, 2003b, 2005; Smith et al., 1993; Boyd et al., 1997;
Beyer et al., 2006; Simon et al., 2007).

The Al2O3 contents in most global peridotite suites negatively
correlate with (La/Yb)N ratios (Fig. 12), which reflects a similar
refertilization trend as that observed in the North China Craton peri-
dotite xenoliths. Broadly positive correlations between Re and Al2O3

or Na2O in the global peridotites (Fig. 13), as well as their higher
contents of Re and Na2O than those of primitive mantle, suggest
that they experienced refertilization rather than just depletion by
partial melting. These observations, thus, reflect refertilization of
peridotites with a long-term depletion history by Re-enriched melts,
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similar to those observed from the Totalp ultramafic massif in the
Eastern Swill Alps (van Acken et al., 2008).

Therefore, the characteristics of major and trace element composi-
tions, as well as their correlations in the global peridotite samples, re-
flect widespread refertilization of the depleted SCLM worldwide. This
is also evidenced by the variations of Sr–Nd isotopic ratios with Al2O3

(Fig. 14), notable scatter in Re–Os isotopic plots (Fig. 15), and covari-
ations of Archean–Phanerozoic TRD ages with whole-rock Al2O3 and
olivine Fo in these peridotites (Figs. 14–16), which will be discussed
below.
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3.2. Variations of Sr and Nd isotopes with Al2O3 contents

The Sr–Nd isotopic compositions in the peridotites from Siberia,
Australia, Europe, America and Africa vary greatly from extremely ra-
diogenic isotopic compositions to highly unradiogenic isotopic ratios
(Fig. 14). Both xenolithic and massif peridotite samples show positive
correlation between Al2O3 contents and 143Nd/144Nd ratios and
negative correlation between Al2O3 and 87Sr/86Sr ratios. These corre-
lations can be observed in both kimberlite-borne and basalt-borne
peridotite xenoliths. Since the number of data sets for African
kimberlite-borne peridotites is very small, the correlations between
Al2O3 and Sr–Nd isotopic compositions are not very apparent.
However, the limited data show that the peridotite xenoliths in the
African kimberlites have a large range of Sr–Nd isotopic compositions,
varying from those of isotopically enrichedmantle to depletedmantle
(Pearson et al., 1995a; Simon et al., 2007), consistent with the
radiogenic 87Sr/86Sr ratios (>0.710) and 143Nd/144Nd ratios (>0.513)
for peridotites in the African kimberlites reported in early studies
(Menzies and Murthy, 1980; Richardson et al., 1985; Walker et al.,
1989; Stiefenhofer et al., 1997).

As noted above for the North China Craton peridotites, the corre-
lations of 87Sr/86Sr and 143Nd/144Nd with Al2O3 (Fig. 14) are not con-
sistent with the expected character of melting residues, but reflect
refertilization processes after originally partial melting. Therefore,
the ancient enriched SCLM beneath some typical cratons worldwide,
represented by the peridotites with highly radiogenic 87Sr/86Sr and
unradiogenic 143Nd/144Nd ratios (Fig. 14), have undergone localized
or relatively large-scale melt infiltration although many of them
still keep the signature of typical ancient cratons. For example,
many peridotite xenoliths from the Archean lithospheric mantle
beneath the Kaapvaal craton of southern Africa display extreme
Si enrichment (Fig. 11), which point to opx enrichment by either
melt-rock reaction (refertilization) or cumulus addition (Kelemen
et al., 1992, 1998; Rudnick et al., 1994; Herzberg, 2004; Simon et al.,
2007).

3.3. Signature of Re–Os isotopic compositions

The Re–Os isotopic compositions in the global peridotites show
extremely wide variations, with 187Re/188Os ratios from close to 0 to
higher than 6 and 187Os/188Os from 0.109 to higher than 0.3 (Fig. 15).
In general, the 187Os/188Os in the peridotites positively correlate with
187Re/188Os and Al2O3. The basalt-borne peridotites show relatively ra-
diogenic, varying Os isotopic compositions and Proterozoic–Cenozoic
TRD ages. Numerous peridotites have Re/Os ratios much higher than
the PUM (Fig. 15). The very radiogenic Re–Os isotopic compositions
and high Re abundances in some peridotites reflect Re and/or Os addi-
tion due to peridotite-melt reaction (Chesley et al., 1999; Becker et al.,
2001; Meisel et al., 2001; Reisberg et al., 2004), causing the TRD ages
of the peridotites to be younger than the true age of melt extraction
(Pearson et al., 1995a). The positive correlation between 187Os/188Os
and Al2O3 also reflect refertilization of refractory harzburgites by up-
welling asthenospheric material as that aforementioned for the North
China Craton.
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All studies of seven typical cratons so far (Fig. 1), the African
Kaapvaal craton (Walker et al., 1989; Pearson et al., 1995a; Irvine
et al., 2001; Carlson and Moore, 2004) and the Tanzanian craton
(Chesley et al., 1999), the American Wyoming craton (Carlson and
Irving, 1994; Carlson et al., 2004) and the Slave craton (Irvine et al.,
2003), the Asian Siberian craton (Pearson et al., 1995b) and the
North China Craton (Gao et al., 2002; Wu et al., 2006; Zhang et al.,
2008a; Chu et al., 2009), and the North Atlantic craton (Hanghoj
et al., 2001), indicate Archean formation of their SCLM roots, repre-
sented by the kimberlite-borne peridotites with Archean TRD ages
(Fig. 16). Some peridotite bodies from the Western Gneiss Region,
Europe also have Archean Re–Os model ages, implying an ancient
melt-extraction event in the SCLM (Beyer et al., 2004). In contrast,
most of the basalt-borne peridotites from the circum-cratonic litho-
spheric mantle have TRD ages of Proterozoic and Phanerozoic times
(Fig. 16). Since the TRD ages provide only minimum estimates of the
formation ages of peridotites, the Proterozoic ages for some xenoliths
could reflect continued addition of fertile material to Archean SCLM.
Moreover, the TRD ages of peridotites hosted by both kimberlites
and basalts broadly correlate with olivine Fo and whole-rock Al2O3

contents. These observations are very similar to those of the perido-
tites from the North China Craton (Fig. 8), also reflecting refertilization
of the peridotites.

As noted above, the refertilization of Archean depleted SCLM by
melt additions resulted in the rejuvenation of the mantle peridotites.
This inference is strongly supported by the in situ analyses of sulfides
in peridotites that show multiple generations of sulfides with widely
varying Os contents, Re/Os and 187Os/188Os, reflecting introduction of
secondary sulfides during refertilization of the peridotites (Pearson
et al., 1999, 2002; Alard et al., 2002, 2005; Griffin et al., 2002,
2004a; Powell and O'Reilly, 2007; Zhang et al., 2008b; Harvey et al.,
2010). Compared with the peridotites from the Siberian kimberlites,
the samples from the American Wyoming craton (Carlson and Irving,
1994; Carlson et al., 2004) and the African Kaapvaal craton (Griffin
et al., 2004a; Simon et al., 2007) show larger range of TRD ages,
with minimum age of less than 1 Ga (Fig. 16), bearing a resemblance
to those from the North China Craton (Fig. 8). This observation, com-
bined with the large variations in major and trace element and Sr–Nd
isotopic compositions of the cratonic peridotites (Figs. 2–6 and
9–14), indicate that the Archean SCLM beneath the North China
Craton, the Wyoming craton and the Kaapvaal craton experienced
higher degrees of refertilization than that beneath the Siberian
craton. Among the cratons studied, the North China Craton could
have undergone the most intensive refertilization, as is illustrated
by the largest variations in major and trace element and Sr–Nd-Os
isotopic compositions of peridotites. This is consistence with the
recognition that the Archean keel of the North China Craton was
more completely destroyed than those of other cratons around the
world (Menzies et al., 1993, 2007; Griffin et al., 1998b; Fan et al.,
2000; O'Reilly et al., 2001; Xu, 2001; Zhang et al., 2002, 2003;
Carlson et al., 2005; Foley, 2008; Yang et al., 2008; Zhu and Zheng,
2009).

4. Summary and further implications

The ancient SCLM beneath the continents of the world experi-
enced a multi-stage history of melt depletion and refertilization
by episodic melt/fluid-peridotite reactions since segregation from
the convecting mantle (McKenzie and Bickle, 1988; Zindler and
Jagoutz, 1988; Pearson et al., 1995a; Pearson, 1999a; Harvey et al.,
2010). Thus, the refertilization of cratonic and circum-cratonic litho-
spheric mantle is widespread. The first evidence for refertilization
of Archean SCLM came from the Wyoming craton of American con-
tinent, which experienced the partial removal of cratonic mantle
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beneath the southern part of the craton since the Devonian period,
whereas the cratonic keel beneath the Montana is preserved
(Eggler and Furlong, 1991; Carlson et al., 2004). The second evi-
dence came from the North China Craton of Asia, where more com-
plete destruction of Archean keel since Ordovician period was
recognized (Fan and Menzies, 1992; Griffin et al., 1992, 1998b;
Menzies et al., 1993; Fan et al., 2000; Xu, 2001; Zhu et al., 2012;
Tang et al., in press). Other cratons have not yet suffered
large-scale removal of their ancient keels but may find themselves
in the early stages of disruption (Foley, 2008). These observations
indicate that the SCLM beneath Archean cratons worldwide have
been widely refertilized although the degrees of refertilization are
very different.
Much of the ancient depleted SCLM is recently refertilization by the
upwelling of fertile asthenosphericmaterial likely following previous-
ly existing suture zones between ancient blocks, breaks or weak zones
in the Archean root (O'Reilly et al., 2001; Xu, 2001; Zheng et al., 2007;
Foley, 2008; Xiao and Zhang, 2011). Actually, refertilization of ancient
SCLM is an asthenospherization of lower parts of the SCLM, which
may be controlled by the topography of the lithosphere base (Foley,
2008). This process resulted in a great change of geochemical compo-
sition and rejuvenation of the Archean SCLM (Chesley et al., 1999;
Dawson, 2002; Carlson et al., 2004; Beyer et al., 2006; Griffin et al.,
2009; Zhang et al., 2009a). Thus, the chronological significance of
the whole-rock Re–Os isotopic composition in individual xenolith
must be interpreted with great caution. However, an understanding
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of petrography, coupled with integrated studies of whole-rock ele-
ment, particularly including the platinum-group elements, isotope
geochemistry and Re–Os dating of mantle sulphides, can be helpful
to discover the significance of Re–Os isotope ages and secular, com-
plex evolution of the mantle recorded in the xenoliths (Pearson
et al., 2002, 2003; Beyer et al., 2006; Rudnick and Walker, 2009).
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Harzburgites (cpx b5%) are widely regarded as refractory mantle
residues after high-degree extraction of melt. In contrast, fertile
lherzolites (cpx usually >10%) are considered to represent relatively
pristine mantle. Relatively refractory lherzolites can be melting resi-
dues of fertile peridotite when melt fractions are b0.23–0.35 and ini-
tial melting pressures are from about 2 to 7 GPa (Herzberg, 2004).
However, increasing studies suggest that the lherzolites could be
produced by refertilization processes involving interaction of ancient,
refractory SCLM (harzburgites) with upwelling, fertile asthenospheric
material. The refertilization process can exist in not only orogenic
mantle peridotites (e.g., Godard et al., 2000; Saal et al., 2001;
Müntener et al., 2004, 2010; Beyer et al., 2006; Le Roux et al., 2007;
Piccardo et al., 2007; Rampone et al., 2010), but also peridotite
xenoliths of cratonic SCLM worldwide (e.g., Eggler and Furlong, 1991;
O'Reilly et al., 2001; Bell et al., 2003; Griffin et al., 2003a, 2009;
Carlson et al., 2004; Foley, 2008; Zhang et al., 2009a). The refertilization
of ancient, depleted SCLM therefore is a common phenomenon occur-
ring within cratonic and circum-cratonic lithosphere. As a result, the
lherzolite xenoliths with fertile compositions approaching primitive
mantle, usually interpreted as fragments of asthenosphere or subducted
oceanic lithosphere, can also be relics of the ancient lithospheric keel,
strongly refertilized by recent infiltration of asthenosphere-derived
melts (Smith et al., 1993; Zhang et al., 2009a, 2012).

Deformation experiments show that the presence of even a small
fraction of basaltic melt or Si-rich fluid can result in amarked decrease
of olivine-rich rocks strength (Hirth and Kohlstedt, 1995; Soustelle
et al., 2010). Thus, the refertilization via melt/fluid infiltration will
change the geophysical property of ancient SCLM by reducing the
viscosity (Hirth and Kohlstedt, 1995; O'Reilly et al., 2001; Niu, 2005;
Bürgmann and Dresen, 2008; Li et al., 2008; Peslier, 2010 and refer-
ences therein) and increasing the density and heat flow (Hu et al.,
2000), and lead to the destabilization and destruction of the SCLM
(Windley et al., 2010; Zhu et al., 2012; Tang et al., in press; and refer-
ences therein). Combined with previously published petrology of
mantle peridotites, the wide variations in geochemical compositions
of the peridotites worldwide indicate that cratonic SCLM is more sus-
ceptible to compositional change caused by refertilization than is gen-
erally assumed. Therefore, refertilization of depleted Archean keel
through melt-peridotite reaction must play a key role in the composi-
tional change and rejuvenation of the SCLM, leading to the final de-
struction of the Archean cratons.
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