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The North China Craton (NCC) provides one of the classic examples of craton destruction, although the
mechanisms and processes of its decratonization are yet to be fully understood. Here we integrate pet-
rological, geochemical, geochronological and geophysical information from the NCC and conclude that
the destruction of the craton involved multiple events of circum-craton subduction, which provided
the driving force that destabilized mantle convection and tectonically eroded the lithospheric mantle
beneath the craton. Furthermore, subducted-slab-derived fluids/melts weakened the subcontinental
lithospheric mantle and facilitated thermo-mechanical and chemical erosion of the lithosphere. The more
intense destruction beneath the eastern part of the NCC reflects the crucial contribution of Pacific plate
subduction from the east that overprinted the mantle lithosphere modified during the early subduction
processes. Our study further establishes the close relationship between lithospheric modification via
peridotite–melt reactions induced by oceanic plate subduction and cratonic destruction.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Cratons are ancient continental nuclei and many of the ancient
cratons on the Earth are underlain by thick subcontinental litho-
spheric mantle. The thickness of the lithospheric mantle varies
from a few tens of kilometers beneath rift zones to more than
250 km beneath some of the ancient continents (Griffin et al.,
2009). The relationship of the lithospheric mantle to denser
asthenosphere beneath is considered to be like that of an iceberg,
buoyant but partly submerged (Boyd, 1998). Knowledge of the evo-
lution of ancient cratons is essential to understand continental
dynamics and the long-term stability of ancient continental
landmasses.

Early continental crust is generally considered to have formed
from partial melts derived from the primitive mantle and the res-
idue settled down to build the subcontinental lithospheric mantle.
Thus, the lithospheric mantle beneath ancient cratons should be
highly depleted in basaltic components (such as Fe, Ca and Al)
due to the high-degree of magma extraction, resulting in a lower
density (about 3.31 mg/m3) and higher viscosity than those of
the asthenosphere beneath (about 3.35 mg/m3; O’Reilly et al.,
2001). The density and viscosity differences help explain why most
cratons have remained chronically stable in the scheme of global
tectonics.
Archean cratons (such as the Kaapvaal craton and Siberian cra-
ton) are characterized by ancient, cool (lower geotherms than the
adjacent mantle) and thick lithospheric mantle, mainly composed
of high-refractory harzburgites and lherzolites (Boyd, 1998; Griffin
et al., 2009; Herzberg et al., 2010). Moreover, typical cratons are
dormant, in the absence of active magmatism except for some
eruptions of kimberlites due to their thick lithosphere and low
geotherms. However, the North China Craton (NCC; Fig. 1) has lost
most of the typical characteristics of other Archean cratons (Zhu
et al., 2012a and references therein), accompanied widespread
deformation, magmatism and the formation of abundant gold
deposits (Yang et al., 2003; Li et al., 2013). The NCC has become
the most striking example of cratonic destruction over the world
because the eastern NCC experienced much stronger destruction
than any other cratons (Carlson et al., 2005; Tang et al., 2013a).
Therefore, an evaluation of the tectonic history of the NCC destruc-
tion bears global significance and helps us to understand continen-
tal evolution and the related effects.

Many studies have addressed the mechanism and processes
associated with cratonic destruction in the NCC (Wu et al., 2008;
Zhang et al., 2009a; Zhu et al., 2011, 2012a; and references there-
in). One of the salient features is that the destruction of the craton
was coincident with inward subduction of circum-craton plates
and collision with the NCC, which led to the destabilization of
the craton and intensive hydration and refertilization of the sub-
continental lithospheric mantle by crust-derived water and melt
(e.g., Zheng, 1999, 2009; Zhang et al., 2002, 2003, 2007, 2009b;
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Fig. 1. (a) Location of the North China Craton (NCC) in the global plate tectonic
system, and (b) location of the NCC relative to other blocks and fold belts in China
(Zhao et al., 2001; Santosh, 2010). QDSL = Qinling-Dabie-Sulu fold belt.
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Zhang, 2005, 2009; Zheng et al., 2008a, 2008b, 2012; Xu et al.,
2009, 2012b; Zheng and Wu, 2009; Windley et al., 2010; Yang
et al., 2012; Zhu et al., 2012a). The destruction processes may have
been related to high mantle temperatures in the Early Cretaceous,
lithospheric modification by peridotite–melt/fluid interaction
(addition of volatiles) and lithospheric extension (Zhang, 2009).
The subduction of Pacific slab has been considered as a crucial fac-
tor to destabilize mantle convection beneath the eastern NCC (Xu
et al., 2009; Zheng and Wu, 2009; Zhu and Zheng, 2009; Santosh,
2010; Zhu et al., 2011, 2012a, 2012b), which likely caused the
delamination (Gao et al., 2009) and/or thermal–mechanical–chem-
ical erosion of the lithospheric mantle (Xu, 2001; Zheng et al.,
2007; Zhang et al., 2009a; Santosh, 2010; Huang et al., 2012). How-
ever, the various models remain equivocal, and the reason why the
eastern part of the NCC was almost completely destroyed whereas
the thick lithospheric mantle is still preserved beneath the western
part of the craton remains enigmatic. Particularly given the sce-
nario that all the margins of the craton were disturbed by the sub-
duction of oceanic plates, including Paleo-Asian ocean and
Mongol–Okhotsk ocean on the northern side, Paleo-Tethyan ocean
on the southern and western sides, and Paleo-Pacific ocean on the
eastern side of the craton since the Paleozoic (Windley et al., 2010).
Another problem concerns the dominant ages of lithospheric man-
tle beneath the eastern NCC, represented by peridotite xenoliths in
Cenozoic basalts, which show age variation from Paleoproterozoic
to the present, but are not as young as newly-accreted lithosphere
since Cretaceous, leading to the question on how the subduction of
the Pacific plate affected the craton. The main aim of this paper
is to briefly review geophysical, geochemical and geochrono-
logical evidence for the destruction of the NCC, and to address
the relationship between oceanic plate subduction and cratonic
destruction.
2. Geological background

The NCC is one of the world’s oldest continental nuclei, contain-
ing crustal remnants as old as 3800 Ma (Liu et al., 1992; Zhai and
Santosh, 2011). The craton includes Archean keels beneath the
Eastern and Western Blocks, which were amalgamated along the
Central Zone (Fig. 2), also known as the Trans-North China Orogen,
at about 1850 Ma (Zhao et al., 2000, 2001, 2005, 2008, 2010;
Santosh, 2010). The basements of the Eastern and the Western
Blocks mainly consist of Archean tonalitic, trondhjemitic and
granodioritic (TTG) gneisses (Zhao et al., 2000, 2001, 2005). The
Western Block is composed of the Yinshan Block and the Ordos
Block which were linked by the east–west trending Inner Mongolia
Suture Zone at �1.95 Ga (Fig. 2; Santosh, 2010; Zhao et al., 2010).
The dominant lithology within the suture zone is graphite-garnet-
sillimanite gneiss, garnet quartzite, felsic paragneiss, calc–silicate
rock and marble, and has been termed the Khondalite Belt (Zhao
et al., 2010). Paleoproterozoic ultrahigh temperature metamor-
phism has been reported in the Western Block (e.g., Santosh
et al., 2007a, 2007b, 2009; Tsunogae et al., 2011; Zhang et al.,
2012a). The Central Zone consists of a series of 2.5–2.7 Ga granitoid
(TTG) gneisses, greenschist facies mafic rocks, amphibolites, high-
pressure granulites and retrograded eclogites (Kröner et al.,
1988; Zhao et al., 2000, 2001, 2005; Guo and Zhai, 2001; Zhang
et al., 2006; Zhai and Santosh, 2011).

The Western Block remains relatively stable after its cratoniza-
tion and its lithosphere is about 200 km thick. In contrast, the East-
ern Block of the craton experienced significant tectonothermal
reactivation and decratonization in its eastern part (Yang et al.,
2008a) since the Mesozoic, as manifested by the extensive
emplacement of voluminous Mesozoic granites, mafic intrusions
and volcanic rocks (Zhang et al., 2002, 2003, 2004, 2005; Yang
et al., 2003; Wu et al., 2005; Zhang, 2007), as well as Cenozoic
basalts (Fig. 2; Zhou and Armstrong, 1982; E and Zhao, 1987;
Chi, 1988; Lu et al., 1991; Fan et al., 2000; Zeng et al., 2011; Zhang
et al., 2011; Xu et al., 2012b). The contrasting composition of man-
tle xenoliths in the Paleozoic diamondiferous kimberlites (Dobbs
et al., 1994; Chi and Lu, 1996; Zheng, 1999; Zheng and Lu, 1999)
and Cenozoic basalts in the Eastern Block suggests that a thick
lithosphere (about 200 km) existed until the Paleozoic, but was
substantially thinned (about 60–120 km) in the Late Mesozoic
and Cenozoic (Fan and Menzies, 1992; Menzies et al., 1993,
2007; Griffin et al., 1998; Menzies and Xu, 1998; Xu et al., 1998;
Zheng et al., 1998, 2001, 2006; Zheng, 1999; Fan et al., 2000; Xu,
2001; Gao et al., 2002; Rudnick et al., 2004; Zhang et al., 2008a,
2009a; Tang et al., 2011). The large-scale thinning of the litho-
sphere (up to 80–120 km), as well as the dramatic change in the
physical and chemical properties of the lithospheric mantle (from
old, cool and highly refractory to relatively young, hot and fertile)
since the Paleozoic, indicates an intensive lithospheric modifica-
tion and even destruction of the eastern NCC (e.g., Menzies et al.,
2007; Zhang et al., 2010, 2011; Zhu et al., 2012a).
3. Evidence for the destruction of eastern NCC

The geological phenomenon that a craton lost its stability has
been defined as cratonic destruction (Yang et al., 2008a; Zhu
et al., 2011). The surface features of cratonic destruction include



Fig. 2. Geological map of the NCC, revised after Zhao et al. (2000, 2008) and Santosh (2010), showing the distributions of the tectonic subdivisions, rocks of different ages and
mantle xenoliths localities mentioned in the text. NSGL = North–South Gravity Lineament.
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intense modification of the lithosphere, widespread magmatism,
metallogeny and tectono-thermal events. Cratonic destruction
can result in even complete loss of ancient lithospheric root.

3.1. Geochemical evidence

Fragments derived from the subcontinental lithospheric mantle
are carried to the surface as xenoliths by kimberlites and basaltic
rocks. Mantle xenoliths carry invaluable petrographic and
geochemical information about the nature and evolution of
lithospheric mantle. Studies of mantle xenoliths entrained in the
Paleozoic diamondiferous kimberlites in the Mengyin and Fuxian
regions of China (Fig. 2) suggest that the lithosphere in these local-
ities was ancient (Archean ages), cool (geotherms 36–40 mW/m2)
and thick (>200 km) at the time of kimberlite eruption, with highly
refractory compositions in mantle peridotites, implying that a typ-
ical Archean lithospheric keel existed beneath the eastern NCC at
least until the kimberlite emplacement (Menzies et al., 1993;
Griffin et al., 1998; Zheng et al., 2001, 2006; Gao et al., 2002; Wu
et al., 2006; Zhang et al., 2008a). In contrast, the Cenozoic basalts
sampled a younger (Proterozoic-present ages), thinner (<80 km)
and hotter (50–105 mW/m2) lithosphere, with predominantly fer-
tile compositions in mantle peridotites (Griffin et al., 1998; Fan
et al., 2000; Zheng et al., 2006; Xiao et al., 2010), consistent with
the geophysical observation of a thin lithosphere (60–80 km) in
this region (Chen, 2009). The voluminous magmatism, high surface
heat flow, thin lithosphere and fertile compositions in the litho-
spheric mantle suggest that the eastern NCC has been completely
destroyed (complete loss of typical characteristics of ancient
craton) since the Paleozoic and the character of the subcontinental
lithospheric mantle has changed from typical-craton to ocean-like
(Xu et al., 1998; Zheng et al., 1998; Fan et al., 2000), which makes
the NCC unique amongst ancient cratons of the world.

The salient characteristics of the lithospheric mantle beneath
the NCC are summarized below.

(1) Olivine Fo of peridotite xenoliths (Fig. 3): Most of the perido-
tite xenoliths in the Paleozoic kimberlite from the eastern
NCC are highly refractory harzburgites and dunites and have
high Fo (>92) (Zheng and Lu, 1999; Zhang et al., 2008a; Chu
et al., 2009), typical of cratonic lithospheric mantle. How-
ever, the peridotite xenoliths in the Cenozoic basalts from
the eastern NCC (Xu et al., 1998; Zheng et al., 1998; Fan
et al., 2000; Wu et al., 2003, 2006; Chu et al., 2009; Xiao
et al., 2010) and those from the northern margin of NCC
(Fan and Hooper, 1989; Song and Frey, 1989; Fan et al.,
2000; Chen et al., 2001; Rudnick et al., 2004; Ma and Xu,
2006; Tang et al., 2007; Zhang et al., 2009a, 2012b; Liu
et al., 2011) are dominantly fertile lherzolites with low Fo
(<92 and most <91), showing the character of oceanic litho-
spheric mantle. The peridotite xenoliths from the Hebi and
Fanshi regions, central NCC (Zheng et al., 2001; Tang et al.,
2008, 2011; Xu et al., 2008b; Liu et al., 2011) are composed
of refractory harzburgites (Fo > 92) and relatively fertile
lherzolites (Fo < 92). The high-Mg# (Fo > 92) harzburgites
are interpreted as relics of the Archean lithosphere, pre-
served locally at relatively shallow levels (<100 km) (Zheng
et al., 2001, 2005; Tang et al., 2008, 2011; Xu et al., 2008b;



re b
mu

N

0
84 86 88 90 92 94

4

Fo

8

12

reb
mu

N
reb

mu
N

reb
mu

N

0

10

20

30

40

50

0

10

20

30

40

50

0

20

40

60

80

100

Paleozoic kimberlite-borne

Hebi + Fanshi
(central NCC)

Hanuoba + Jining +
Yangyuan + Datong
(north margin of NCC)

Eastern NCC

Fig. 3. Histograms showing olivine Fo distribution of the peridotite xenoliths from
the NCC. Data sources: North margin of NCC (Fan and Hooper, 1989; Song and Frey,
1989; Fan et al., 2000; Chen et al., 2001; Rudnick et al., 2004; Ma and Xu, 2006;
Tang et al., 2007; Zhang et al., 2009a, 2012b; Liu et al., 2011); Eastern NCC (Xu et al.,
1998; Zheng et al., 1998; Fan et al., 2000; Wu et al., 2003, 2006; Chu et al., 2009;
Xiao et al., 2010); Central NCC (Zheng et al., 2001; Tang et al., 2008, 2011; Xu et al.,
2008b; Liu et al., 2011); Paleozoic kimberlite-borne xenoliths (Zheng and Lu, 1999;
Zhang et al., 2008a; Chu et al., 2009).

Nd (t)

reb
mu

N

0
-15 -5 5 10 25

5

10

20

reb
mu

N

0

5

10

15

20

25

15

-10 0 15 20

reb
mu

N

0

5

10

20

15

Paleozoic kimberlite-borne
(Eastern NCC)

CHUR

Enriched
mantle Depleted

mantle

Cenozoic basalt-
(Eastern NCC)

Cenozoic basalt-
(Central-Western

NCC)

Fig. 4. Histograms showing eNd(t) distribution of the peridotite xenoliths from the
NCC. The eNd(t) were recalculated to 20 Ma. CHUR represents the chondritic uniform
reservoir (Rollinson, 1993). Data sources: Eastern NCC (Xu et al., 1998; Fan et al.,
2000; Wu et al., 2006; Chu et al., 2009; Xiao et al., 2010); Central-Western NCC
(Song and Frey, 1989; Tatsumoto et al., 1992; Fan et al., 2000; Rudnick et al., 2004;
Ma and Xu, 2006; Tang et al., 2008, 2011; Xu et al., 2008b; Zhang et al., 2009a,
2012b); Paleozoic kimberlite-borne xenoliths (Zhang et al., 2008a; Chu et al., 2009;
Yang et al., 2009b).

74 Y.-J. Tang et al. / Journal of Asian Earth Sciences 78 (2013) 71–82
Liu et al., 2011). In contrast, the low-Mg# lherzolites might
represent modified lithospheric mantle beneath the central
NCC, with characteristic radiogenic isotopic systematics in
most of the peridotites (Tang et al., 2008, 2011, 2013b)
and/or newly accreted lithospheric mantle beneath the east-
ern NCC as suggested by its fertile composition (Zheng et al.,
1998, 2005, 2007; Fan et al., 2000; Xu, 2001; Xu et al., 2004;
Ying et al., 2006) and young Re–Os isotopic ages (Zhi et al.,
2001; Wu et al., 2003, 2006; Chu et al., 2009; Xiao et al.,
2010). The Fo variation may reflect different degrees of mod-
ification of the lithospheric mantle beneath the craton by
peridotite–melt reaction, which is known to lower the Fo
of mantle peridotites (Griffin et al., 1999, 2009; Zhang,
2005). The peridotites from the eastern NCC and the north-
ern margin of the craton have lower Fo than those from
the central NCC, likely reflecting higher-degree modification
of the lithospheric mantle beneath the margin than that
beneath the central NCC (Tang et al., 2008, 2011, 2013b;
Zhang, 2009).

(2) The change of eNd in mantle peridotites (Fig. 4): The Paleo-
zoic kimberlite-borne peridotite xenoliths are relatively
enriched in Nd isotopic composition, with eNd ranging from
�2.5 to +5 (Zheng, 1999; Zhang et al., 2008a; Chu et al.,
2009; Yang et al., 2009b). In contrast, most of the peridotite
xenoliths in the Cenozoic basalts are depleted in Nd isotopic
composition, with eNd > +5 (Xu et al., 1998, 2004; Fan et al.,
2000; Wu et al., 2006; Chu et al., 2009; Xiao et al., 2010). The
peridotite xenoliths from the Central Zone and the Western
Block show a large variation in isotopic composition, with
eNd ranging from �10 to +25 (Song and Frey, 1989; Tatsum-
oto et al., 1992; Fan et al., 2000; Rudnick et al., 2004; Ma and
Xu, 2006; Tang et al., 2008, 2011; Xu et al., 2008b; Zhang
et al., 2009a, 2012b). The depleted Nd isotopic compositions
of the Cenozoic basalt-borne peridotite xenoliths can be
interpreted as those of newly accreted lithospheric mantle
(Zheng et al., 1998; Fan et al., 2000). Alternately, the
depleted Nd isotopic composition can also indicate the mod-
ification of the lithospheric mantle by melts with depleted
isotopic compositions (e.g., asthenosphere-derived melts;
Xu et al., 2003; Tang et al., 2006, 2011; Zhang, 2009). This
inference is well supported by the broadly positive correla-
tion between eNd and Al2O3 contents (Fig. 5). The refractory
peridotites, with low eNd values, became fertile and high in
eNd values with the reaction between peridotites and melts
with depleted isotopic compositions (Tang et al., 2013b).

(3) H2O contents of lithospheric mantle (Fig. 6): Water played
an important role during the modification of the subconti-
nental lithospheric mantle of the NCC (Windley et al., 2010
and references therein; Santosh, 2010). The Cenozoic
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lithospheric mantle beneath the eastern China, as repre-
sented by the available data on H2O content from the NCC,
Yangtze Craton and Cathaysia block in southeastern China,
is quite dry (most samples <60 ppm) relative to typical cra-
tonic mantle of South Africa and Colorado plateau (>80 ppm)
(Yu et al., 2011 and references therein). The extremely low
water content of the NCC mantle has been interpreted as a
relict feature of the Archean–Proterozoic constitution, possi-
bly due to heating by an upwelling asthenospheric flow dur-
ing the lithospheric thinning of the NCC since the Late
Mesozoic (Yang et al., 2008b; Xia et al., 2010, 2013). In con-
trast, the water content of Mesozoic lithospheric mantle
beneath the eastern NCC, represented by clinopyroxene
phenocrysts in the Feixian basalts (210–370 ppm; Xia
et al., unpublished data), is much higher than the MORB
(50–200 ppm). This observation suggests that the Mesozoic
lithospheric mantle beneath the NCC experienced strong
modification by hydration before the large-scale lithospheric
thinning. The hydration of the Mesozoic lithospheric mantle
could enhance heat conductivity, facilitate mineral deforma-
tion and lower the solidus and viscosity of peridotites
(Peslier, 2010 and references therein), which facilitated the
large-scale melting and thinning of the lithospheric mantle.

3.2. Geochronological evidence

The TRD ages of the peridotite xenoliths (Fig. 7): The peridotites
in the Paleozoic kimberlite from the eastern NCC have Paleoprote-
rozoic–Archean TRD ages, suggesting the existence of Archean
lithospheric mantle beneath the eastern NCC (Gao et al., 2002;
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Zhang et al., 2008a; Chu et al., 2009; Yang et al., 2009b). However,
all of the peridotites from the eastern NCC (Zhi et al., 2001; Gao
et al., 2002; Wu et al., 2003, 2006; Chu et al., 2009; Xiao et al.,
2010) and most of the samples from the Central Zone and the Wes-
tern Block (Gao et al., 2002; Xia et al., 2004; Xu et al., 2008b; Zhang
et al., 2009a, 2012b; Liu et al., 2011) show TRD ages ranging from
Proterozoic to present. Only a few samples from the central NCC
have whole-rock Archean TRD ages. In situ data of sulfides in the
peridotites from the Hannuoba and Hebi localities in the Central
Zone of the NCC (Yu et al., 2007; Zheng et al., 2007; Xu et al.,
2008a) show a very large variation of TRD ages, ranging from Arche-
an to Cenozoic. The relatively young and variable TRD ages of the
peridotite xenoliths in the Cenozoic basalts also suggest different
degrees of modification of the lithospheric mantle beneath the
NCC by melt additions (Xu et al., 2008a,b; Zhang, 2009; Xiao and
Zhang, 2011; Tang et al., 2013b). The fact that the relics of Archean
lithospheric mantle, as demonstrated by both in situ and whole
rock age data, is observed only beneath the central NCC further
indicates lower-degree modification of the mantle beneath the
central region than that beneath the eastern NCC. Based on the
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from the asthenosphere (Zhang et al., 2009a; Xiao et al., 2010; Tang et al., 2011; Xiao and
block) to east (Baohai Sea Bay), and the apparent ages of lithospheric mantle beneath the
Present). (c and d) Schematic maps showing the formation of Dabie suture (orogen) on t
collisional events between the NCC and Yangtze Block with the closure of Paleo-Tethyan
ocean since the Paleozoic (Zhang et al., 2003; Windley et al., 2010). (e) E–W directed vert
slab in the mantle transition zone under eastern China (Huang and Zhao, 2006), (f) schem
craton, the lithospheric mantle becomes thin, young and fertile (Griffin et al., 1998;
modification and destruction of the mantle beneath the east relative to that beneath the
further thinned due to the subduction of Pacific plate and some new lithospheric mantle
above observations, we illustrate that spatial variation of the litho-
spheric architecture of the NCC in Fig. 8. From west to east of the
craton, the lithospheric mantle becomes thin, young and fertile
(Griffin et al., 1998; Xu, 2001; Gao et al., 2002; Chen, 2009; Zhang
et al., 2009a) due to stronger modification and destruction of the
mantle beneath the east relative to that beneath the west. Some
of the new lithospheric mantle beneath the Tanlu fault in the east-
ern NCC might have formed through asthenospheric accretion due
to their fertile composition (Zheng et al., 1998; Xu, 2001; Xiao
et al., 2010) and very young Re–Os isotopic ages (Xiao and Zhang,
2011).

Another important question is why the dominant ages of peri-
dotite xenoliths in the Cenozoic basalts from NCC are Proterozoic
and variable from Archean to the present. It has been well estab-
lished that the chemical erosion (Xu, 2001; Zheng, 2009) and/or
peridotite–melt reactions (Gao et al., 2009; Zhang, 2009; Zhang
et al., 2009b; Zheng and Wu, 2009) played an important role in
the transformation of the lithospheric mantle beneath the NCC.
The different degrees of mantle lithospheric refertilization could
explain the continuity of TRD ages (Fig. 7) although most of the
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et al., 2001), (b) schematic diagram showing the variation of lithospheric thickness
09) and the stagnant slab of subducted Pacific plate (Huang and Zhao, 2006). The

somatized by fluids/melts derived from subducted slabs during early circum-craton
2007). The lithospheric mantle beneath the Eastern Block subsequently experienced
hao, 2006; Zhang et al., 2008b; Zhao and Ohtani, 2009; Tang et al., 2012) and those
Zhang, 2011). The thickness of lithosphere dramatically decreases from west (Ordos
craton become younger from west (Archean–Proterozoic) to the east (Proterozoic-

he southern side and Solonker suture on the northern side of the NCC as a result of
ocean and between the NCC and Mongolian plate with the closure of Paleo-Asian

ical cross section of P-wave velocity perturbations at 41�N showing stagnant Pacific
atic map showing the lithospheric architecture of the NCC. From west to east of the
Xu, 2001; Gao et al., 2002; Chen, 2009; Zhang et al., 2009a), reflecting stronger

west. The previously modified lithospheric mantle beneath the Eastern Block was
may be formed through an asthenospheric accretion due to thermal loss (Xu, 2001).



30

20

10

f
H

(t)

-10

-20

0

3.5 Ga

CHUR

Depleted mantle

3.0 Ga

2.5 Ga

3.5 Ga
-30

-40

-50

-60

3.8 Ga

40 80 120 160 200 240

Upper crust Lu/ Hf = 0.0093

176
177

Average crust Lu/ Hf = 0.015

176
177

500 1000 1500 2000 2500 3000 3500 40000

River sands
Sedimentary rocks
Granulite and pyroxenite
Igneous rocks

Zircon age (Ma)

500 1000 1500 2000 2500 3000 35000

ytilibaborp
evi tale

R

Zircon age (Ma)

Fig. 9. eHf(t) Versus U–Pb age plot of zircons from river sands (Yang et al., 2009a), sedimentary rocks (Yang et al., 2006b; Ying et al., 2011b), granulite and pyroxenite xenoliths
(Zheng et al., 2004, 2008a, 2009, 2012; Liu et al., 2010; Ying et al., 2010, 2011a; Zhang, 2012; Zhang et al., 2012c, 2012d, 2013) and igneous rocks (Yang et al., 2006a, 2007,
2008a; Zhang et al., 2011). Inset histogram shows relative probability plots of U–Pb ages for zircons, including zircon data for igneous rocks in Wu et al. (2005).

Y.-J. Tang et al. / Journal of Asian Earth Sciences 78 (2013) 71–82 77
younger ages are apparent ages due to metasomatism and do not
represent actual melt-extraction events. The relics of Archean
lithospheric mantle beneath the Central Zone still possess Archean
TRD ages due to the very weak modification by the peridotite–melt
reaction. In contrast, the peridotite xenoliths with Proterozoic ages
might have experienced relatively strong refertilization (Tang
et al., 2013a). Some peridotites with very young ages from the
Tanlu fault in the eastern NCC may also represent newly-accreted
lithosphere since Cretaceous (e.g., Xu et al., 1998; Zheng et al.,
1998, 2001; Zheng, 1999; Fan et al., 2000; Ying et al., 2006; Xiao
et al., 2010).
3.3. Geophysical evidence

The lateral thickness of the lithosphere beneath the NCC is
highly variable. It is about 80 km in the Bohai basin in the east
and changes from about 90 to 120 km within a lateral distance of
100 km at around the boundary between the Bohai basin and the
Central Zone to the west (Chen, 2009), spatially coincident with
the distinct gravity decrease of more than 100 mGal across the
North–South Gravity Lineament (Fig. 2). The gravity lineament par-
allels the Pacific subduction margin for 3500 km and roughly over-
laps the Central Zone. To the east of the gravity lineament, the
Eastern Block is characterized by a thin lithosphere (60–80 km),
high heat flow (50–106 mW/m2) and weak negative to positive re-
gional Bouguer anomalies. To the west of the gravity lineament,
the Ordos Block has a thick lithosphere (>200 km), low heat flow
(35–72 mW/m2; Hu et al., 2000) and strong negative Bouguer
anomalies. The geophysical image of lithosphere once again con-
firms that the destruction mainly occurred in the eastern NCC
(Chen, 2009) as also previously suggested mainly based on geolog-
ical and geochemical data (Menzies et al., 1993; Griffin et al., 1998;
Xu, 2001; Zheng et al., 2001).
4. Effects of circum-craton collision/subduction

The NCC experienced multiple events of circum-craton collision
and subduction since the Paleozoic, such as the Paleozoic north-
ward subduction of Tethyan ocean and Yangtze Craton, and the in-
tense collision between Yangtze Block and North China in Triassic
that formed the Qinling–Dabie ultrahigh-pressure belt in the south
(Li et al., 1993). Further collisions include the Late Paleozoic south-
ward subduction of Paleo-Asian ocean and collision with the NCC,
Early Mesozoic closure of Paleo-Asian ocean and Okhotsk ocean
that formed the huge accretionary-type Central Asian Orogenic
Belt in the north (Xiao et al., 2003, 2013), and the Mesozoic–Ceno-
zoic subduction of Pacific plate in the eastern part of the craton
(Huang and Zhao, 2006). These events could provide not only the
driving force that triggered the instability of convective mantle be-
neath the craton by mechanical collision and erosion, as well as
thermal perturbation (Lin et al., 2005; Zhao et al., 2007; Zhu
et al., 2011), but also fluids/melts derived from the subducted slabs
that intensively refertilized the overlying subcontinental litho-
spheric mantle. The episodes of circum-craton collision/subduction
eventually led to extensive modifications in chemical compositions
via peridotite–melt/fluid interactions (Fig. 8) and physical proper-
ties including the thickness, thermal state and viscosity, which in-
duced the large-scale thinning and dramatic transformation of the
lithospheric mantle beneath the NCC (Gao et al., 2002; Zhang et al.,
2002, 2003, 2008b, 2009b; Zheng et al., 2006, 2012; Windley et al.,
2010; Tang et al., 2011, 2012; Yang et al., 2012; Li et al., 2013).
Numerical simulations of two-dimensional anisotropic medium
indicate that complex upper mantle deformation has occurred in
the NCC (Zhao and Xue, 2010). The anisotropy pattern beneath
the NCC imaged in high-resolution seismic tomography was con-
sidered as the result of a regional upwelling beneath the Central
Zone and a mantle wedge flow beneath the Eastern Block (Zhao
et al., 2007; Zhao and Xue, 2010).

The effects of the subducted Pacific plate on the eastern part of
China have been confirmed from geological, geophysical and geo-
chemical studies. Since the Late Mesozoic, eastern China was an
important part of the circum-Pacific tectonic–magmatic zone
(Wu et al., 2005; Sun et al., 2007). High-resolution seismic tomo-
graphic images show that the stagnant slabs of subducted Pacific
plate extend from Japan to Beijing in China for over 1000 km long,
indicating that the arc-trench system covers the entire region from
the Japan trench to East Asia (Huang and Zhao, 2006; Zhao et al.,
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2007). The westward subduction of the Pacific plate generated a
large mantle wedge above the subducted oceanic slab and signifi-
cantly affected the physical–chemical properties of lithospheric
mantle beneath the eastern China (Huang and Zhao, 2006; Zhao
et al., 2007; Zhu and Zheng, 2009; Zhu et al., 2011). Mesozoic–
Cenozoic igneous rocks in eastern China provide petrological and
geochemical records of modification of the lithospheric mantle
by the fluids/melts derived from the subducted Pacific plate (Sun
et al., 2007; Zhang et al., 2008b, 2009b; Tang et al., 2012; Xu
et al., 2012a; Zheng, 2012; Zhu et al., 2012a). The Late Cretaceous
mafic dikes in the Qingdao region, eastern China, show geochemi-
cal features similar to those of back-arc basalts from the Japan Sea
(such as radiogenic Sr and Pb, but less radiogenic Nd isotopic com-
positions), suggesting the contribution of subducted Pacific slab in
the mantle source (Zhang et al., 2008b). The petrologic and geo-
chemical signatures of the Cenozoic continental basalts and their
mantle peridotite xenoliths from eastern China also reflect the
components of subducted oceanic crust in their mantle sources
(Zhang et al., 2009b; Tang et al., 2012; Xu et al., 2012a). Remark-
ably, the Cretaceous large-scale orogenic lode gold minerlization
and major tectonic change from extgension to transpression in
eastern China occurred contemporaneously with an abrupt change
of �80 �C in the drifting direction of the subducting Pacific plate
(Sun et al., 2007), indicating the importance of Pacific plate sub-
duction in the lithospheric evolution of eastern China.

Circum-craton collision/subduction not only led to the intensive
modification of the lithospheric mantle beneath the NCC, but also
caused widespread magmatism and reworking of the crust
throughout the NCC. U–Pb ages and Hf isotopes of zircons from riv-
er sands (Yang et al., 2009a), sedimentary rocks (Yang et al., 2006b;
Ying et al., 2011b), granulite and pyroxenite xenoliths (Zheng et al.,
2004, 2008a, 2009, 2012; Liu et al., 2010; Ying et al., 2010, 2011a;
Zhang, 2012; Zhang et al., 2012c, 2012d, 2013) and igneous rocks
including granites, granodiorites, monzogranites, dolerites, diorites
and basalts (Wu et al., 2005; Yang et al., 2006a, 2007, 2008a; Zhang
et al., 2011) revealed the long history of preservation, episodic
growth and reworking of the Archean continental crust of the
NCC (Fig. 9). The most striking age peak at 2.5 Ga (Fig. 9) was sug-
gested to mark an important period for the evolution of the lower
crust of the NCC and the cratonization of the Archean blocks in the
NCC (at least for the Eastern Block). The 1.8–2.0 Ga age peak, coin-
ciding with the timing of amalgamation of the Eastern Block and
Western Block of the craton (Zhao et al., 2005, 2010; Santosh,
2010; Zheng et al., 2013), suggests the first significant modification
of the whole lower crust after the cratonization of the Archean
blocks of the NCC (Zhang et al., 2012d). The Phanerozoic episodic
magmatic events recorded from the lower crustal xenoliths
(Fig. 9) are linked to the tectonic movements of circum-craton
blocks (see the review of Zhang et al., 2013). The early Paleozoic
craton-wide event, as evidenced by the emplacement of Ordovician
kimberlites and the widespread occurrence of Paleozoic zircons
identified in the garnet-bearing lherzolites and pyroxenites, gran-
ites and eclogites (Zhang et al., 2013 and references therein), is
the first phase of Phanerozoic magma underplating following the
final cratonization of the NCC in the Paleoproterozoic, marking
the initiation of the decratonization process. This coincided with
the northward subduction of the Paleo-Tethyan ocean in the south
and the southward subduction of the Paleo-Asian Ocean in the
north of the NCC. The �120 Ma age peak observed in the lower
crustal rocks and igneous suites marks a major and significant
magmatic event, likely associated with the geothermal overturn
caused by the giant south Pacific mantle plume (Wilde et al.,
2003). The Early Cretaceous Earth was characterized by upwelling
of the mid-Pacific superplume, mantle avalanche related to the clo-
sure of Tethys and the breakup of Gondwana continent, which
could have accelerated and changed the direction of the Pacific
subduction (Sun et al., 2007; Zhu et al., 2011; and references there-
in). The geotherm elevated by the superplume induced large-scale
melting of the NCC lithosphere and ultimately resulted in the com-
plete destruction of the eastern NCC. The age peak at �50–60 Ma
likely reflects the episodic melt-peridotite interaction induced by
juvenile input of probable asthenospheric origin because the 50–
60 Ma zircons are remarkably enriched in rare earth elements, U
and Th, absent in Ce anomaly, and have positive eHf(t) values, sug-
gesting that the metasomatic melt at 50–60 Ma could be derived
from the deplete mantle (Zheng et al., 2009; Liu et al., 2010; Zhang
et al., 2012c). The occurrence of sapphirine in a mantle-derived
xenolith from the Cenozoic Hannuoba basalts in the NCC also sug-
gests magma underplating and interaction between the infiltration
melts and the wall-rock peridotite (Su et al., 2012). These events,
closely related to the subduction of circum-craton plates, resulted
in the modification of the crust of the NCC (Xu, 2002; Liu et al.,
2010; Zhang et al., 2011, 2012d, 2013; Zhang, 2012), similar to
the transformation from the refractory lithospheric mantle to fer-
tile one by the reaction between refractory peridotites and infil-
trated melts (Zhang et al., 2013).
5. Contrasting cratonic destruction in the Eastern and Western
Blocks

Experiments of volatile-bearing peridotite melting have proved
that partial melting of mantle peridotite does not occur until at
least one of the three factors are satisfied: addition of volatiles,
temperature increase and decompression (see review of Zhang
(2009)). The addition of volatile can significantly lower the melting
point of peridotite. Temperature increase or depression will lead to
the intersection of geothermal gradient and solidus of peridotite,
resulting the partial melting of previously refractory peridotite.
For the eastern NCC, large-scale melting of the lithospheric mantle
occurred because all the above three factors could be sufficient in
the Late Mesozoic (Zhang, 2009): volatile could be added into the
lithospheric mantle by peridotite–melt/fluid interaction; tempera-
ture could be increased by elevation of regional thermal anomaly
due to superplume; and decompression could have resulted from
lithospheric extension and thinning.

Since the Cretaceous, the backarc expansion caused by west-
ward subduction of Pacific plate has played a crucial role in the
lithospheric extension and the formation of sedimentary basins
in the eastern NCC, associated with asthenospheric upwelling. This
resulted in the large-scale melting and further thinning of the over-
lying lithosphere by heating and chemical erosion (Xu, 2001, 2007;
Xu et al., 2004). As discussed above, the destruction of the eastern
NCC is ascribed to the combined effects of multistage circum-cra-
ton collision/subduction events (Xu et al., 2009; Zhang, 2009;
Zheng et al., 2012). The earlier-stage subduction processes had al-
ready significantly transformed the chemical compositions and
physical properties of the lithospheric mantle beneath the margins
of the NCC (Gao et al., 2002; Zhang et al., 2002, 2003, 2009a; Zheng
et al., 2006; Zhang, 2007; Xu et al., 2009; Zheng, 2009; Yang et al.,
2012; Zhu et al., 2012b), and facilitated the lithospheric thinning
and the intensive destruction of the craton.

In contrast, the Western Block of the NCC has been bound by
orogens formed by continent–continent collisions since the Paleo-
proterozoic, which buffered and protected the block from further
destruction caused by early subduction of palaeo-oceans. This is
because the relatively ‘‘cold’’ subduction (low geothermal gradi-
ents) of the continental crust would result in crustal accretion
and orogeny. The subducting crust cannot release significant
amounts of aqueous fluids in cold subduction zones until a major
dehydration reaction occurs at mantle depths, in contrast to the
subduction of oceanic crust that occurs in both low and high
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geothermal gradients (Zheng, 2012 and references therein). Com-
pared to the Western Block, the Eastern Block has been signifi-
cantly and continuously affected by the subducted Pacific plate
since the Mesozoic. The subduction of oceanic plate is commonly
characterized by a significant release of aqueous fluids, which will
be introduced into the overlying mantle-wedge peridotite. Partial
melting of hydrated peridotites gives rise to oceanic and continen-
tal arc magmatism above oceanic subduction zones (Yogodzinski
et al., 2001; Zheng, 2012 and references therein).Therefore, the ef-
fect of Pacific plate subduction overprinted the early modified
lithospheric mantle, ultimately leading to the intensive destruction
of the eastern NCC.
6. Summary

The destruction of the lithospheric mantle beneath the NCC is
the net result of the evolution of continental lithosphere under
specific tectonic settings (Zhu et al., 2011), and was related to
the multiple events of circum-craton collision and subduction
since the Paleozoic. These processes not only resulted in craton-
scale tectono-thermal reactivation, but also caused substantial
modification in the chemical composition and physical property
of the lithospheric mantle via multiple additions of melts/fluids,
thus significantly contributing to the lithospheric thinning through
thermo-mechanical and chemical erosion and/or asthenospherisa-
tion, upwelling of asthenosphere and the destruction of the eastern
part of the craton. The reactions between old peridotites and pen-
etrated melts altered the metasomatized peridotites to younger,
more fertile and depleted in Nd isotopic compositions than their
precursors.

The early-stage circum-craton collision and subduction may
have not only destabilized the whole NCC, but also resulted in
mantle-wedge metasomatism. In the late stage, the prolonged sub-
duction of Pacific plate further aggravated the modification of the
lithospheric mantle beneath the eastern NCC and ultimately
caused whole-scale destruction. In contrast, the Western Block re-
mained relatively robust shielded on the margins by circum-craton
continental orogens (Central Asian Orogenic Belt in the north, Qil-
ian orogen in the west and Qinling-Dabie orogenic belt in the
south).
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