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Experimental studies on the partial melting of eclogite and peridotite provide important clues on mantle metasomatism.
Here, we review results from some of the recent experiments and show that melting of carbonated eclogite and peridotite
can produce carbonatitic to carbonated silicate melt, in which carbonates melt preferentially before Ti oxides and silicates.
Low-degree melting results in carbonatitic melt coexisting with Ti oxides and silicates. This process also leads to the frac-
tionation between some high-field strength elements (Nb, Ta, Zr, Hf, and HREE) and highly incompatible elements (U and
Th) in the melt. When Ti oxides are nearly exhausted in eclogite, extremely high TiO2 contents (e.g. 19 wt.%) are present in
the melt with marked concentration of Nb and Ta. These results help to explain the features of carbonatitic metasomatism
and the Nb–Ta spike in oceanic island basalts as identified in experimental studies. These studies also explain the reducing
conditions that stabilize diamond in the deep mantle (>150 km) as well as the occurrence of diamond at different depths
reported in various studies. Melting in such a reduced mantle can happen through redox reaction between diamond, pyroxene,
and olivine, in which the initial liquid is a carbonated silicate melt. However, the theoretical oxygen fugacity (fO2) in the
asthenosphere is much lower than that predicted by the reaction and requires elevated fO2, which can be caused by the addi-
tion of relatively oxidized materials from the lower mantle, deep asthenospheric material, and various recycled components.
A combination of these processes generates locally oxidized domains in the deep mantle.

Keywords: melting experiments; carbonated eclogite; peridotite; carbonatitic and silicate melts; mantle metasomatism;
redox state

Introduction

Oceanic basalts can be modified by hydrothermal alter-
ation on their way to trenches with carbonates, such as
calcite and dolomite that are deposited on the ocean
floor (Staudigel et al. 1981a; McDuff and Edmond 1982;
Staudigel and Hart 1983; Von Damm 1990; Elderfield and
Schultz 1996; Alt and Teagle 1999, 2003). It is estimated
that each year subduction transports into the mantle 20 km3

of oceanic crust with 2.3–3.7 × 1012 mol carbon, most
of which can survive the dehydration process and are car-
ried into the deep mantle (Reymer and Schubert 1984;
Hofmann 1997; Dasgupta et al. 2004). These recycled
components are preserved as eclogite, garnetite, perovskite
minerals, and post-perovskite phases in the asthenosphere,
transition zone, lower mantle, and along the core–mantle
boundary, respectively (Oganov and Ono 1990; Ringwood
1994; Irifune et al. 1996; Serghiou et al. 1998; Murakami
et al. 2004; Maruyama et al. 2007; Ernst 2010). Controlled
by its diverse redox state, carbon can occur as carbonate in
an oxidized environment and elemental carbon or carbide

*Corresponding author. Email: tangyanjie@mail.igcas.ac.cn

under reducing conditions. The return of subducted slabs
can be realized with the help of mantle plumes (Hart
et al. 1992), entraining various types of recycled materials
(Zindler and Hart 1986; Chauvel et al. 1992).

Recent high P–T experiments have shown that the
solidus of carbonated eclogite intersects the mantle
geotherm at pressures of 10 GPa or higher, which is
about 200 km shallower than that of CO2-free peridotite
(Figures 1 and 4; Hammouda 2003; Dasgupta et al.
2004; Dasgupta and Hirschmann 2010). Carbonatitic and
carbonated silicate melts produced from carbonated eclog-
ites would thus become an efficient metasomatic agent
for the surrounding peridotites and impose similar geo-
chemical features on them. The existence of diamond
from both lithosphere and asthenosphere suggests an ade-
quately reduced environment to stabilize elemental carbon
at depths > 150 km (Boyd et al. 1985; Simakov 1998;
Stachel 2001; Boyd 2002; Shirey et al, 2002; Tappert
et al. 2005; Harte 2010; Harte and Richardson 2011;
Dobrzhinetskaya 2012). However, asthenosphere-derived
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Figure 1. Composite phase diagram of carbonated eclogite in the deep Earth from Dasgupta et al. (2004) and Litasov and Ohtani (2010).
Solidi labelled with D, H, L, and Y are from Dasgupta et al. (2004), Hammouda (2003), Litasov and Ohtani (2010), and Yaxley and Brey
(2004). Coe – coesite, St – stishovite, Gra – graphite, Di – diamond, Gt – garnet, Cpx – clinopyroxene, Ky – kyanite, Mst – magnesite,
Dol – dolomite, Ilm – ilmenite, Rut – rutile, Cc – calcite, Cpv – Ca perovskite, Mpv – Mg perovskite, CL – carbonatitic melt, SL – silicate
melt. CAS and CF are phases that exist only in high-pressure experiments but have not been found in natural rocks.

rocks such as oceanic island basalt (OIB) and I-type kim-
berlite are much more oxidized than the theoretical oxygen
fugacity (fO2) in the mantle (Green 1990; Ballhaus 1993;
Ballhaus and Ronald Frost 1994; Kadik 1997; Holloway
1998; Stagno and Frost 2010; Rohrbach and Schmidt
2011). This paradox indicates either fO2 heterogeneity in
the mantle or a changing redox state of the melts during
upwelling.

High P–T experiments can help constrain the vari-
ous deep mantle processes such as mantle magmatism
and metasomatism. In this article, we provide a brief
review of some recent melting experiments on eclogite and
peridotite with their near solidus phases and relate them to
carbonatitic metasomatism, Nb–Ta spike in OIBs, and fO2

anomaly in the mantle.

Melting behaviour of carbonated eclogite

Bulk composition and solidus of carbonated eclogite

Carbonated eclogite is a carbonate-bearing (<2–3 wt.%)
metabasite that forms under ultrahigh-pressure metamor-
phism (Kushiro and Yoder 1966; Ringwood and Green
1966; Green and Ringwood 1967; Dal Piaz and Lombardo
1986; Wang et al. 1989; Dasgupta et al. 2005). Starting
materials in the melting experiments for carbonated
eclogite are prepared from either natural rocks, such as
basalt and eclogite, with addition of carbonate or artificial
mixtures chemically equivalent to the former (Hammouda

2003; Pertermann and Hirschmann 2003; Dasgupta et al.
2004; Yaxley and Brey 2004; Litasov and Ohtani 2010).
Apart from the major oxides such as SiO2, MgO, FeOT,
Al2O3, Na2O, and CaO, TiO2 is an important component
in the system because of the common presence of ilmenite
and rutile in eclogites (Rudnick et al. 2000; Heaman et al.
2002; Pertermann and Hirschmann 2003; Dasgupta et al.
2005; Enami et al. 2011).

The solidus of carbonated eclogite can be influenced by
factors like Ca# (Ca/(Ca + Mg + FeT)), contents of alkalis
and Fe, and the presence of CO2 gas and H2O (Kogiso et al.
2004; Dasgupta et al. 2005; Dasgupta and Hirschmann
2007). High solidus temperature can be observed in high
Ca# system because the initial carbonatitic melt is mainly
derived from Ca–Mg carbonate, and the eutectic temper-
ature in the CaCO3–MgCO3 binary system is at interme-
diate Ca# (Irving and Wyllie 1975; Byrnes and Wyllie
1981; Buob et al. 2006). On the contrary, high alkali
content would decrease the solidus temperature due to
its fluxing effect as an active component in the melt
(Wang and Takahashi 1999; Dasgupta et al. 2004; Kogiso
et al. 2004; Dasgupta et al. 2005; Litasov and Ohtani
2010). The initial melting temperature can be significantly
decreased by high contents of the fusible component Fe,
CO2 gas, and H2O (Kushiro et al. 1968; Kushiro 1972;
Huang and Wyllie 1976; Gaetani and Grove 1998; Asimow
and Langmuir 2003; Dasgupta et al. 2005; Litasov and
Ohtani 2010).
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Subsolidus phases in the melting of carbonated eclogite

Subsolidus phases of carbonated eclogite vary conspicu-
ously at different pressures. The stability fields of gar-
net and clinopyroxene stretch into the transition zone
(Hammouda 2003; Pertermann and Hirschmann 2003;
Dasgupta et al. 2004; Yaxley and Brey 2004; Litasov and
Ohtani 2010; Tsuno and Dasgupta 2011), where clinopy-
roxene dissolves into garnet and enriches it with a majoritic
component (Ringwood and Major 1971; Moore et al. 1991;
Ono and Yasuda 1996; Wang and Takahashi 1999; Litasov
and Ohtani 2010). Ilmenite and calcite–dolomite solid
solution (Cc–Dolss)/aragonite occur as the host of tita-
nium and carbon, respectively; they transform into rutile
and magnesite ± aragonite at higher pressure (Hammouda
2003; Dasgupta et al. 2004; Isshiki et al. 2004; Yaxley
and Brey 2004). Coesite and stishovite are common phases
when the bulk composition is SiO2 oversaturated with
the latter more stable at depths greater than 300 km
(Hammouda 2003; Thomsen and Schmidt 2008; Litasov
and Ohtani 2010; Tsuno and Dasgupta 2011). Kyanite
and corundum will appear when the system is extremely
abundant in Al, and kyanite breaks down into stishovite
and corundum at pressures above 10 GPa (Thomsen and
Schmidt 2008; Zhai and Ito 2008; Litasov and Ohtani
2010). In a K-rich system, K can be stored in feldspar
(<5 GPa), phengite (<10 GPa), and K-rich hollandite
(>10 GPa); clinopyroxene is also an important reservoir
of K at pressures above 5 GPa (Schmidt 1996; Schmidt and
Poli 1998; Wang and Takahashi 1999; Hermann and Green
2001; Tsuno and Dasgupta 2011). As pressure increases in
the transition zone, minerals will shift into a post-garnet
assemblage, such as perovskite, CAS (CaAl4Si2O11), CF,
and NAL (both CF and NAL are Na–Al-rich phases) (Wang
and Takahashi 1999; Hirose and Fei 2002; Litasov and
Ohtani 2004; Hirose et al. 2005; Maruyama et al. 2007;
Zhai and Ito 2008; Litasov and Ohtani 2010). The various
phases mentioned above are illustrated in Figure 1.

Compositional variation and immiscibility of melts from
carbonated eclogite

Dolomitic melt emerges as temperature increases across
the solidus. Calcite–dolomite solid solution and magne-
site melt into the liquid gradually with minor amounts
of clinopyroxene and ilmenite/rutile, and they disappear
after only tens of degrees (Hammouda 2003; Dasgupta
et al. 2004, 2006; Litasov and Ohtani 2010; Tsuno and
Dasgupta 2011). Those relative refractory Ti oxides and
silicates can survive higher temperatures, making the first
silicate drop generated subsequent to the carbonatitic melt.
Figure 2 illustrates a typical melting process of forma-
tion of carbonated eclogite at 3 GPa (Dasgupta et al.
2006).

Immiscibility is liable to happen between the
carbonatitic and silicate melt at low P–T conditions
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Figure 2. Weight fractions of garnet (Gt), clinopyroxene
(Cpx), ilmenite (Ilm), Cc–Dolss (calcite–dolomite solid solu-
tion), carbonatitic melt (Lc), and silicate melt (Ls) in melting of
carbonated eclogite at 3 GPa (Dasgupta et al. 2006). Immiscibility
between carbonatitic and silicate melts occurs in the temperature
interval between the two dashed lines.

(Figure 3A and 3B). Immiscibility has been observed
experimentally over the pressure ranges from 0.7 kbar to
6.5 GPa (Freestone and Hamilton 1980; Lee and Wyllie
1997; Hammouda 2003; Dasgupta et al. 2004; Thomsen
and Schmidt 2008; Brooker and Kjarsgaard 2010; Tsuno
and Dasgupta 2011). However, higher pressure promotes
the mutual solubility of carbonatitic and silicate melts,
and higher temperature activates the motion of ions and
weakens the interfacial tension between two immiscible
melts (Anastasiadis et al. 1988; Veksler et al. 2010). Thus,
an increase in pressure and temperature can prevent the
structural differentiation in melt and effectively hinder the
immiscibility.

Melting of mantle rocks in different redox conditions

Apart from pressure and temperature, the redox state is
also a critical factor in controlling the melting process of
peridotite. Magmas can be produced through melting of
carbonated peridotite in oxidized conditions or though a
redox reaction in relatively reduced mantle.

Melting of carbonated peridotite

The starting materials for carbonated peridotite are pre-
pared with CaO, MgO, Al2O3, SiO2, Na2O, FeOT, and
carbonate in proportion to natural peridotite. Several
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Figure 3. Quenched melt pictures for the melting of carbonated eclogite and peridotite. Pictures (A) and (B) show the immiscibility
between carbonatitic liquid (Lc) and silicate liquid (Ls) in melting of carbonated eclogite (Hammouda 2003; Dasgupta et al. 2006).
Picture (C) is the quenched product of carbonated silicate melts from carbonated peridotite (Dasgupta et al. 2007); no obvious immiscible
texture was observed. Picture (D) shows carbonated silicate melt coexisting with graphite-containing peridotite (Stagno and Frost 2010).

studies have constrained the solidus of carbonated
peridotite, but the results show an obvious scatter in the
P–T diagram, because the solidus location of carbonated
peridotite is substantially influenced by Na2O/CO2

(Pickering-Witter and Johnston 2000; Dasgupta and
Hirschmann 2007). Dasgupta and Hirschmann (2010)
adjusted these published data based on the effect of
Na2O/CO2 (Falloon and Green 1989; Dasgupta and
Hirschmann 2006; Ghosh et al. 2009; Litasov and Ohtani
2009) and gave a revised solidus function (from 2 to
35 GPa) as follows (Figure 4):

T(◦C) = 0.0238 × [P(GPa)]3 − 2.2084 × [P(GPa)]2

+ 73.7991 × [P(GPa)] + 830.3808.

No immiscibility has been reported in the melting of
carbonated peridotite so far (Figure 3C). At pressures
<5 GPa, dolomitic melt is produced first, mainly at the
expense of carbonates. Subsequently, a sharp change can
be observed, after a small temperature interval, from
carbonatitic to carbonated silicate melt as a consequence of
the reaction among carbonatitic melt, clinopyroxene, and
garnet (Canil and Scarfe 1990; Moore and Wood 1998;
Lee et al. 2000b; Gudfinnsson and Presnall 2005; Dasgupta
et al. 2007; Foley et al. 2009). This is similar to the parage-
nesis of carbonatite and nephelinite–melilitite with rarity of
intermediate composition. However, the melting behaviour
of carbonated peridotite changes at pressures >5 GPa.

Early carbonatitic melt experiences a gradual transition to
carbonated silicate melts. The contents of MgO and SiO2

in the melt increase with temperature; Al2O3 is initially
elevated and then diminishes, whereas there is a decrease
in CaO, alkalis, FeO, and CO2 (Ryabchikov et al. 1993;
Dalton and Presnall 1998; Gudfinnsson and Presnall 2005;
Brey et al. 2008).
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Melting of peridotite under reduced condition

Carbon can exist as graphite, diamond, or carbide in the
deep mantle if it is too reduced to stabilize magnesite
(Ballhaus 1995; Rohrbach et al. 2007; Rouquette et al.
2008; Dasgupta and Hirschmann 2010; Stagno and Frost
2010). Peridotite in such circumstances melts through a
redox reaction, during which carbon transfers into the oxi-
dized form (Green 1990; Ballhaus 1993; Ballhaus and
Ronald Frost 1994; Kadik 1997; Holloway 1998; Dasgupta
and Hirschmann 2010; Rohrbach and Schmidt 2011).
Experimental studies have demonstrated that the initial liq-
uid is a carbonated silicate melt (Figure 3D; Stagno and
Frost 2010). This is consistent with silicate minerals tak-
ing part in the oxidation process of carbon, for example
EMOG/D:

olivine + graphite/diamond + O2 = enstatite + magnesite.

The redox reaction of carbon can occur in different
ways. For instance, Stagno and Frost (2010) suggested
that diamond can be oxidized into either magnesite or
carbonatitic melt at 270 km and fO2 around FMQ-2 along
the adiabat (Figure 5A). However, the fO2 condition in
the asthenosphere can delay the occurrence of melting
upward to 150 km or shallower. Thus, an elevated fO2 is

needed at depths greater than 150 km, from where some
carbonatitic melts are derived. The fO2 of melt will be
buffered by C–CO2 before its separation from the carbon-
bearing residue (Figure 5B; Ballhaus 1993; Holloway
1998; Ryabchikov and Kogarko 2010; Stagno and Frost
2010; Rohrbach and Schmidt 2011). Once the melt leaves,
the fO2 is buffered by its own property (Ballhaus 1993;
Holloway 1998; Bézos and Humler 2005; Rohrbach and
Schmidt 2011). The variations of ferric/ferrous content in
spinel indicate that there is a decrease of 0.5 log(fO2)/GPa
in the ascending melt. The fractionations of olivine and
pyroxene with abundant Fe2+ will also promote an elevated
fO2 (Ballhaus et al. 1991). Consequently, the melt becomes
more and more oxidized.

Melting in the lower mantle

Perovskite-structured minerals are dominant in the lower
mantle and Fe3+ is strongly stabilized if the minerals
are rich in Al. Excessive Fe3+ can be generated through
disproportional reaction of ferrous iron (Irifune et al.
1996; McCammon et al. 2004; Frost and McCammon
2008; Frost et al. 2008; Irifune et al. 2010; Ryabchikov
and Kogarko 2010; Rohrbach and Schmidt 2011):

3Fe2+ = Fe0 + 2Fe3+.
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The eutectic temperature in a Fe–S system is much lower
than the estimated temperature of the lower mantle and
therefore the metallic iron produced as above can be easily
dissolved in the Fe–S system (Chudinovskikh and Boehler
2007; Morard et al. 2008; Zhang and Fei 2008; Kamada
et al. 2010). As a result, it is rational to predict that these
dense Fe0 will stay still or descend as soon as plumes stem
from the lower mantle, making these ascending compo-
nents more oxidized than their source region.

Discussions on mantle metasomatism

Carbonatitic metasomatism in mantle

Carbonatitic melt is one of the most powerful metasomatic
agents in the mantle, and it can also occasionally generate
metasomatic dolomite and magnesite (Kushiro 1975; Ionov
et al. 1993; Yang et al. 1993; Lee et al. 2000a; Yang and
Jahn 2000). Some carbonatitic metasomatized peridotites
show a contrasting fractionation between some high-field
strength elements (HFSE; e.g. Nb, Ta, Zr, Hf, and HREE)
and highly incompatible elements (e.g. U, Th, and LILE)
in their normalized trace element diagrams (Yaxley et al.
1991, 1998; Rudnick et al. 1993; Gorring and Kay 2000;
Zheng et al. 2006; Xu et al. 2008; Su et al. 2010). This can
be well explained by the melting of carbonated eclogite and
peridotite.

Carbonate takes priority over other phases to melt
in both the aforementioned carbonated rocks. Melting
at low degree (depending on the content of carbonate)
induces liquefaction of carbonate, simultaneously with
alkaline earth (e.g. Ca, Sr, and Ba), alkaline (if there is

no phlogopite), and highly incompatible elements (e.g. U
and Th) concentrated into the melt (Brenan and Watson
1991; Adam and Green 2001; Hammouda et al. 2009),
while most Ti-rich phases and silicate remain as a solid
(Moore and Wood 1998; Hammouda 2003; Dasgupta et al.
2004, 2006, 2007; Gudfinnsson and Presnall 2005; Foley
et al. 2009; Litasov and Ohtani 2010; Tsuno and Dasgupta
2011). Some HFSE, e.g. Nb, Ta, Zr, Hf, and HREE, would
be strongly retained in Ti oxides, clinopyroxene, and gar-
net for their high Dmin/melt (ranging from 10−2 to 102 for
different minerals) (Klemme et al. 1995; Sweeney et al.
1995; Foley et al. 1999; Adam and Green 2001; Klemme
et al. 2002; Xiong et al. 2005; Girnis et al. 2006; Bromiley
and Redfern 2008; Gaetani et al. 2008; Tang et al. 2008;
Dasgupta et al. 2009). Consequently, fractionation among
trace elements occurs at low-degree melting of carbonated
rocks.

Metasomatism of Nb–Ta-rich melts in asthenosphere

OIBs provide one of the most robust geochemical probes
into the asthenosphere (White 1985; Sun and McDonough
1989; Weaver 1991; Hofmann 1997). All of the typical
OIB rocks share a common characteristic of a Nb–Ta spike
in the spider diagram (Figure 6; Hofmann 1997), and this
spike is particularly remarkable for HIMU-type basalts and
those with high 3He/4He (Sun and McDonough 1989;
Chauvel et al. 1992; Hilton et al. 1999, 2000; Jackson et al.
2008). OIBs show relatively higher radiogenic Pb and Os
contents and more enriched components than N-MORB,
a feature that has been explained as the consequence of
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Figure 6. Nb–Ta spike in the trace element diagrams of OIBs. Data source: EMI-type basalt from Pitcairn Island (Eisele et al. 2002),
EMII-type basalt from Malumalu (Workman et al. 2004), and HIMU-type basalt from Mangaia (Woodhead 1996). Basalts with high
3He/4He from Iceland and The Galapagos Islands are from Jackson et al. (2008).
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recycled materials in their source (Chauvel et al. 1992;
Reisberg et al. 1993; Marcantonio et al. 1995; Roy-Barman
and Allegre 1995; Hofmann 1997). Hence, the OIBs with a
marked Nb–Ta spike cannot be considered as the products
of melting of depleted asthenosphere alone.

Geochemists have argued that rutile-bearing eclogites
contribute the Ti–Nb–Ta-rich metasomatic agent in the
mantle. This prevalent idea can be supported effectively
by melting experiments of eclogite in which Ti-rich melts
have been observed (Klemme et al. 2002; Pertermann and
Hirschmann 2003; Dasgupta et al. 2006; Gaetani et al.
2008; Bromiley and Redfern 2008). For example, Dasgupta
et al. (2006) reported a value of 19% TiO2 in silicate melt
at 1225◦C (3 GPa). Bromiley and Redfern (2008) recorded
13.24% of Ti, 0.013% of Nb, and 0.005% of Ta in melt
at 1600◦C (6 GPa) and 12.78% of Ti, 0.086% of Nb, and
0.037% Ta at 1900◦C (10 GPa). The content of Ti climaxes
at the temperature where TiO2 phases nearly run out. Such
kinds of melt are able to resist chemical dilution at low
melt/rock ratios and considerably elevate the contents of
Ti–Nb–Ta in peridotite or transform a large proportion of
the peridotite completely into pyroxenite. These elements
can be preserved in minerals like amphibole, phlogopite,
ilmenite, rutile, and clinopyroxene (Forbes and Flower,
1994; Ionov and Hofmann 1995; Konzett 1997; Grégoire
et al. 1999; Pearson et al., 2003). Thus, the extraordi-
nary contributions of recycled oceanic crusts can be well
reflected in OIBs by the Nb–Ta spike.

Oxygen fugacity anomaly in the mantle

Existence of diamond at the bottom of the lithosphere
(at least > 150 km) suggests that the deep lithosphere is
reduced enough to stabilize elemental carbon (Boyd et al.
1985; Simakov 1998; Boyd 2002 Shirey et al, 2002). Low
fO2 in the asthenosphere and deeper mantle can be evi-
denced from the various reports worldwide on diamonds
of deep origin (Stachel 2001; Tappert et al. 2005; Harte,
2010). These findings indicate that carbonate cannot be the
dominant host of carbon in the deep part of the mantle and
that melting of carbon-bearing peridotite can happen only
through redox reaction. However, experiments demonstrate
that the thermodynamic conditions in the asthenosphere are
not suitable for the redox melting of peridotite (Stagno and
Frost 2010). Thus, an elevated fO2 is required to explain
those asthenosphere-derived carbonated silicate melt (e.g.
I-type kimberlite) and melt at 200–300 km beneath ridges
(Dunn et al. 2001; Gu et al. 2005; Baba et al. 2006), and
this requires some connection with metasomatism in the
deep mantle.

Magmas sourced from the lower mantle and deep
asthenosphere progressively oxidized during their ascent
to shallower levels. These magmas are able to modify the
composition of peridotite along their upward path and also
remarkably change the fO2 conditions; a similar result
can also be brought about by fluids and melts released
from recycled materials. The final combined influence
of metasomatism would generate various different redox
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Figure 7. Distribution diagram of redox states in the mantle. The blank stripe stands for the compressed part in lower mantle. Reduced
and oxidized regions are coloured with green and red, respectively. In the asthenosphere, the oxygen fugacity decrease with depth; this is
expressed by a transition from light to dark green. A mantle wedge manifests a high fO2 due to addition of slab-derived fluid. Melt from
recycled crustal materials and the lower mantle would become more and more oxidized during their ascent. Metasomatism by such melts
would change the original redox state in the deep mantle.
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states in the mantle, leading to locally oxidized domains in
the reduced deep mantle where diamond and carbide alloy
are the dominant host of carbon (Figure 7).

Summary

Carbonated eclogite consists of garnet, clinopyroxene, Ti
oxide, carbonate, and other minor phases. Carbonated
peridotite is mainly composed of olivine, clinopyrox-
ene, orthopyroxene, garnet, and carbonate. These minerals
transform into post-garnet phases such as perovskite, CAS,
NF, and NAL in the mantle transition zone and lower
mantle. Carbonates melt at lower temperatures than do Ti
oxides and silicates. Low-degree melting of carbonated
eclogite and peridotite can produce carbonatitic liquid
mainly at the expense of carbonate, containing minor Ti
oxide and silicate, leading to the coexistence of carbonatitic
melt with solid and resultant fractionation between some
HFSEs (Nb, Ta, Zr, Hf, and HREE) and highly incompat-
ible elements (U and Th) in the melt due to their different
Dmin/melt.

Carbonated silicate liquid can be produced through
an increase in the degree of melting. In the fusion of
carbonated eclogite, immiscibility between carbonatitic
and carbonated silicate melt occurs at pressure
<6.5–7.0 GPa. At temperatures where Ti oxide is impov-
erished in the protolith, extremely high TiO2 contents (e.g.
19 wt.%) can occur in the silicate melt. Nb and Ta are
also remarkably concentrated due to their high partition
coefficients for Ti oxide. In the melting of carbonated
peridotite, immiscibility is not observed. Melt composi-
tions change from carbonatite to melilitite-nephelinite at
pressure < 5 GPa and from carbonatite through kimberlite
to komatiite at higher pressure. These experimental results
help to explain carbonatitic metasomatism and the Nb–Ta
spike characteristic of OIB.

With increasing depth, the mantle becomes more and
more reduced, and the fO2 is low enough at 150 km
to stabilize diamond, as supported by the reports of dia-
mond from both lithosphere and asthenosphere. Melting in
such reduced mantle can take place through a redox reac-
tion between diamond, pyroxene, and olivine, in which the
initial liquid is carbonated silicate melt. In the lower man-
tle, perovskite would stabilize Fe3+ through the reaction
3Fe2+ = Fe0 + 2Fe3+. The metallic iron so produced is
easily dissolved in the Fe–S system. The Fe0 will remain,
or descend as soon as plumes rise from the lower man-
tle, making these ascending components more oxidized
than their source regions. Theoretically calculated fO2 in
the asthenosphere is much lower than that predicted by
redox reactions. This requires an elevated fO2 that can be
caused by the addition of relative oxidized materials from
the lower mantle, deep asthenosphere, and various recycled
components; these processes make the presence of locally
oxidized domains possible in the reduced deep mantle.
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