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Detailedmineralogical and geochemical studies have been carried out on a suite of pyroxenite xenoliths captured
in a lateMesozoic basaltic dike from Junan, eastern Shandong, which is tectonically situated in the Sulu ultrahigh
pressure orogenic belt. Two types of pyroxenites, namely websterite and garnet pyroxenite were identified
according to their mineral assemblages. The equilibrium temperatures (828–935 °C) of websterite and garnet
pyroxenite xenoliths, falling within the temperature range of lower crustal xenoliths, suggest that they were
derived from the lower crust rather than the lithospheric mantle. The websterite xenoliths are characterized
by higher MgO and lower Al2O3; their convex upward REE patterns, along with lower concentrations of highly
incompatible elements indicate that they were high pressure cumulates. Their extremely unradiogenic Nd and
radiogenic Sr isotopic compositions imply the contribution of crustal materials to their sources. It is suggested
that the precursor melts of websterite xenoliths were derived from a mantle source which had been intensely
modified by the subducted lower continental crust of the Yangtze craton following the collision with the North
China craton in the Triassic. The compositional features of garnet pyroxenites also suggest their cumulative
origin, however, the sharp contrast in trace element concentrations and Sr–Nd isotopic compositions with
those of websterite xenoliths indicate they have different precursor melts. Their Sr and Nd isotopic compositions
are consistent with the suggestion that their precursor melts were derived from an enriched lithospheric mantle
which had been metasomatized by melts released from the Proto-Tethyan oceanic crust which was subducted
into the mantle prior to the subduction of continental crust of Yangtze craton. The occurrence of websterite
and garnet pyroxenite xenoliths provide evidence that the lithospheric mantle of the North China craton had
been significantly modified by the recycled oceanic and continental crust resulting from the collision between
the Yangtze craton and the North China craton.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Peridotite, granulite, and pyroxenite xenoliths entrained in volcanic
rocks have long been used to decipher the physical properties, compo-
sition and tectonic evolution of the sub-continental lithosphere. Com-
pared to peridotite and granulite xenoliths, which have relatively
definite derivation depths, i.e., peridotite is from the upper mantle and
granulite from the lower crust, the issues concerning the depths from
which pyroxenites were captured and their petrogenesis are more
contentious and not well understood. Pyroxenite may form at lower
crustal depths or in the crust–mantle transition zone as evidenced by
the occurrence of composite xenoliths consisting of granulites traversed
by pyroxenite veins (Upton et al., 2001; Dessai et al., 2004). However,
pyroxenite xenoliths have been shown to form largely in the upper
mantle and diverse pyroxenites are generally regarded as a physical
manifestation of mantle heterogeneity. Different models have been
86 10 62010846.
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proposed to account for the formation of pyroxenites. They have been
suggested to represent primary melt of alkali basaltic or tholeiitic
picritic compositions that crystallized within the upper mantle (Ho
et al., 2000); high pressure cumulates from basaltic magmas passing
through the mantle (Frey, 1980; McGuire and Mukasa, 1997; Litasov
et al., 2000; Zhang et al., 2010), and metasomatic products resulting
from interaction of reactive melts with mantle peridotites (Garrido
and Bodinier, 1999; Liu et al., 2005; Sobolev et al., 2005); or preserved
solid-state remnants of subducted oceanic crust (Allegre and Turcotte,
1986; Xu, 2002; Pearson and Nowell, 2004; Yu et al., 2010). In recent
years, special attention has been paid to pyroxenites mainly because
pyroxenite may act as source rocks for the generation of MORB
(Hirschmann and Stolper, 1996) and intra-plate alkali basalts (Carlson
and Nowell, 2001; Hirschmann et al., 2003; Kogiso et al., 2003), both
of which are traditionally considered to be derived from mantle
peridotites.

Peridotite and pyroxenite xenoliths on theNorth China craton (NCC)
frequently occur in Cenozoic alkali basalts, however until recently,
because of their lower abundance, pyroxenite xenolith have received
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less attention than peridotites. Notable progress has been made in re-
cent years with the studies of pyroxenite xenoliths (Xu, 2002; Liu
et al., 2005; Yu et al., 2010; Zhang et al., 2010). These results on one
hand reconfirmed the diverse origins of pyroxenites; on the other
hand, these show us the potential importance of pyroxenites for
the understanding of processes in deep lithosphere and regional
geodynamics.

In this paper, we report the mineralogical, petrological, elemental
and Sr–Nd isotopic compositions of a suite of pyroxenites entrained in
a late Mesozoic basaltic dike, eastern Shandong province. These data
enable us to put constraints on the origin of diverse pyroxenites and
to characterize the recycled continental and oceanic crustal components
in the deep lithosphere underneath the Sulu orogenic belt. Moreover,
the lithospheric modification of the NCC resulting from northward
collision of Yangtze craton is also discussed.

2. Geological background and sample petrography

The NCC, with Archean crustal remnants as old as 3.8 Ga, is one of
the oldest cratons in the world (Liu et al., 1992). It is bounded by the
Paleozoic central Asian orogenic belt to the north and the Triassic
Qinling–Dabie–Sulu ultrahigh pressure metamorphic belt to the south
and east, respectively (Fig. 1). The NCC can be divided into Western
Block, Eastern Block and Central Orogenic Belt based on geology, tecton-
ic evolution and P–T–t paths of metamorphic basement rocks (Zhao
et al., 2001). The basement of the Eastern Block is mainly composed of
early to late Archean tonalitic–trondhjemitic–granodioritic (TTG)
gneisses and 2.5 Ga syntectonic granitoids. The Western Block consists
of late Archean to Paleoproterozoic metasedimentary rocks. The Central
Orogenic Belt, separating the Eastern and Western blocks, is composed
of late Archean amphibolites, granulites and greenstones overlain by
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After Zhang et al. (2010).
bimodal volcanic rocks and terrigenous sedimentary rocks. It is general-
ly considered that the Eastern and Western blocks evolved indepen-
dently from late Archean to early Paleoproterozoic times before
colliding into a coherent craton along the Central Orogenic Belt at
ca. 1.85 Ga (Zhao et al., 2000).

Volcanism on the eastern NCC has been active since the Paleozoic, as
manifested by the eruption of Ordovician diamondiferous kimberlites
(Chi et al., 1996). After a long magmatic hiatus, magmatism resumed
in late Jurassic and accelerated in early Cretaceous and Cenozoic as
shown by eruption of voluminous volcanic rocks (Guo et al., 2003; Wu
et al., 2005), emplacement of mafic, alkaline and granitoid rocks (Yang
et al., 2003; Xu et al., 2004a; Zhang et al., 2005) and extensive Tertiary
to Neogene basalts (Zhou and Armstrong, 1982; Cao and Zhu, 1987;
Zhi et al., 1990; Zheng et al., 1998).

Shandong Province, situated in the central part of eastern NCC, is
separated by the long-lived Tanlu fault into two parts, Luxi in the west
and Jiaodong in the east. The tectonics of the Jiaodong region are more
complicated than those of Luxi due to the occurrence of the Sulu ultra-
high pressure metamorphic belt which resulted from the continental
collision between the NCC and the Yangtze craton in late Triassic.

The Junan xenolith-bearing basaltic dike (latitude: 35°16′28″N,
longitude: 118°57′41″E), located around 20 km north of Junan coun-
ty, Shandong Province, is tectonically situated in the Sulu orogenic
belt. This WNW-trending dike intruding a late Mesozoic granite
extends up to 200 m with an average width of 10 m. Measurement
of the whole rock matrix using the K–Ar method yielded an age of
67 Ma (Ying et al., 2006a). Abundant deep-seated xenoliths includ-
ing peridotite, granulite and pyroxenite were entrapped within the
dike. Detailed investigation of the granulite xenoliths revealed that
the lower crust underneath the Sulu orogen has an affinity with the
North China craton rather than with the Yangtze craton (Ying et al.,
gsug
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2010). The studies of peridotite xenoliths demonstrated that the
relics of old refractory lithospheric mantle and the newly accreted
mantle coexisted in the deep lithosphere (Ying et al., 2006a).

Pyroxenite xenoliths in this study occur as discrete nodules; they are
fresh, rounded to sub-angular in shape and range from 3 to 8 cm in size.
They are classified into two groups based on their mineral assemblages
and compositions. (1) Type 1: websterites. They are spinel-free, and
have mineral assemblages of clinopyroxene and orthopyroxene, and
are characterized by re-equilibration textures with granoblastic being
the most common. They are fine- to medium-grained (1–2 mm). (2)
Type 2: garnet pyroxenites. Xenoliths of this group comprise garnet
websterite and garnet clinopyroxenite;most of them show granoblastic
texture with fine tomedium grain sizes (1–2 mm). Garnets and spinels
are closely associated and the smaller garnet grains usually occurring
along the rims of bigger spinel grains. Garnets usually have kelyphitic
rims consisting of fine-grained pyroxene, plagioclase and spinel.

3. Analytical methods

Major element compositions of the constituent minerals were
determined with a Cameca SX50 electron microprobe at the Institute
of Geology and Geophysics, Chinese Academy of Sciences (IGG). The
analyses were operated at 15 kV accelerating voltage, 10 nA current
and 2 μm electron beam. Synthetic and natural minerals were uti-
lized as standards. Analytical results of each mineral represent at
least 3 point analyses of each grain, and several grains from different
Table 1
Electron microprobe analyses of minerals from Junan pyroxenite xenoliths.

Type 1

Sample LG-6 03LG09 05LG5

Mineral Cpx Opx Cpx Opx Cpx

SiO2 52.9 54.4 51.1 52.4 51.4
TiO2 0.34 0.14 0.42 0.10 0.49
Al2O3 2.70 1.59 2.90 1.65 2.91
Cr2O3 0.22 0.1 0.26 0.11 0.24
FeO 7.14 16.5 8.2 20.0 8.68
MnO 0.19 0.37 0.18 0.39 0.2
MgO 14.7 26.8 13.9 24.6 13.62
CaO 20.4 0.68 21.1 0.60 21.6
Na2O 1.08 0.06 0.93 0.02 0.91
K2O 0.00 0.00 0.01 0.01 0.02
NiO 0.00 0.00 0.00 0.00 0.00
Total 99.6 100.6 99.1 99.9 100.1
Mg# 0.79 0.74 0.75 0.69 0.74
Wo 0.44 0.01 0.45 0.01 0.4
En 0.44 0.73 0.41 0.67 0.4
Fs 0.12 0.26 0.14 0.31 0.1

Type 2

Sample LG08-5 LG08-18

Mineral Cpx Opx Gt Sp Cpx

SiO2 49.4 52.1 39.2 0.02 49.5
TiO2 0.19 0.05 0.04 0.06 0.31
Al2O3 7.04 6.27 23.2 59.4 7.44
Cr2O3 0.14 0.12 0.16 2.48 0.16
FeO 5.34 11.7 13.9 20.2 5.42
MnO 0.12 0.08 0.42 0.08 0.04
MgO 13.8 28.6 16.1 17.3 13.7
CaO 22.9 0.43 6.50 0.01 22.8
Na2O 0.62 0.02 0.02 0.01 0.64
K2O 0.01 0.00 0.00 0.00 0.03
NiO 0.03 0.11 0.03 0.32 0.03
Total 99.6 99.4 99.6 99.9 100.1
Mg# 0.82 0.81 0.67 0.60 0.82
Wo–Py–Cr# 0.50 0.01 0.56 0.03 0.49
En–Alm 0.41 0.81 0.27 0.41
Fs–Gro 0.09 0.19 0.16 0.09
Spe 0.01
parts of each sample. All minerals display intra- and inter-granular
homogeneities except that garnets have kelyphitic rims.

Whole rock major oxides were analyzed on the fused glass discs by
X-ray fluorescence spectroscopy with an Axios Minerals spectrometer
at the IGG. The analytical uncertainties are generally within 1–5%. Loss
on ignition (LOI) was determined after the sample powder was heated
in a muffle furnace at 1000 °C for 1 h.

For trace element analyses, sample powders were dissolved with
distilled HF–HNO3 in Teflon screw-cap capsules at 180 °C for 7 days,
dried and then digested with HNO3 at 150 °C for 1 day. Dissolved
samples were diluted to 50 ml with 1% HNO3 before analysis. Internal
standard In was added to correct matrix effects and instrument drift.
Trace element abundances were determined using an inductively
coupled plasma mass spectrometer (Finnigan MAT Element) at IGG.
Precision and accuracy were evaluated through analyses of Chinese
National Standard GSR 3 (basalt powder). Both precision and accuracy
are better than 5% for most elements (see Appendix A).

In situ trace element analyses of clinopyroxene and garnet were
conducted at IGG, using an Agilent 7500a ICP-MS coupled to an ArF
excimer laser ablation system (Geolas Plus). Detailed analytical
procedures were described by Gao et al. (2002a). NIST SRM 612
glass standard was used as an external calibration sample (see
Appendix A). Data reduction was performed using the GLITTER
(Macquarie University) laser ablation software (Griffin et al., 2008).

Sr andNd isotopic ratios weremeasured using a GV Isoprobe-Tmass
spectrometer at IGG. Sample powders were leached with 3N hot HCl
3 LG08-11 LG08-12

Opx Cpx Opx Cpx Opx

52.9 50.4 52.9 51.0 53.1
0.16 0.78 0.17 0.50 0.10
1.72 5.51 4.05 4.76 3.31
0.13 0.33 0.19 0.21 0.14

20.18 6.51 14.3 7.62 16.2
3 0.41 0.17 0.25 0.15 0.36

23.8 13.9 27.3 13.7 26.2
0.65 21.9 0.53 21.1 0.51
0.04 0.88 0.05 1.09 0.05
0.02 0.00 0.00 0.00 0.00
0.00 0.05 0.08 0.05 0.02

100.0 100.3 99.8 100.1 99.9
0.68 0.79 0.77 0.76 0.74

6 0.01 0.47 0.01 0.46 0.01
0 0.67 0.42 0.76 0.41 0.73
5 0.32 0.11 0.23 0.13 0.26

LG08-15

Opx Gt Sp Cpx Gt Sp

52.7 39.5 0.05 46.2 38.1 0.03
0.03 0.04 0.02 1.48 0.14 0.44
6.18 23.1 59.6 10.3 21.9 51.9
0.10 0.11 1.73 0.02 0.04 0.16

11.5 13.7 19.7 8.40 19.1 34.2
0.13 0.44 0.05 0.03 0.72 0.11

28.5 16.2 17.7 10.5 11.6 11.7
0.33 6.35 0.00 22.1 8.10 0.04
0.02 0.04 0.01 1.20 0.01 0.01
0.01 0.00 0.01 0.00 0.00 0.00
0.04 0.02 0.41 0.01 0.00 0.07

99.5 99.5 99.3 100.2 99.7 98.7
0.82 0.68 0.62 0.69 0.52 0.38
0.01 0.56 0.02 0.51 0.41 0.00
0.81 0.27 0.34 0.38
0.18 0.16 0.15 0.20

0.01 0.01



Table 2
Differences inmineral composition of the two types of pyroxenite and peridotite xenoliths.

Type 1 websterite Type 2 garnet pyroxenite Peridotitea

cpx Mg# 0.74–0.79 0.69–0.82 0.86–0.90
Al2O3 2.70–5.51 7.04–10.3 7.22–8.28

opx Mg# 0.68–0.77 0.81–0.82 0.86–0.89
Al2O3 1.59–4.05 6.18–6.27 4.92–5.94

a Peridotite data are from Ying et al. (2006a).
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prior to digestion. The acid leached powders spiked withmixed isoto-
pic tracer (84Sr, 87Rb, 150Nd and 147Sm) were dissolved with distilled
HF + HNO3 in Savillex Teflon screw-cap beakers at 150 °C for
7 days. The Rb, Sr and REEs were separated from matrix elements
with cation exchange columns packed with 2 ml AG50W × 12 resins
(200–400 mesh). Subsequently, the Nd and Smwere separated from
other REEs using Eichrom-LN columns (Chu et al., 2009). Procedural
blanks were b100 pg for Rb, 200 pg for Sr, b20 pg for Sm and b50 pg
for Nd, respectively. Measured 87Sr/86Sr and 143Nd/144Nd ratios were
corrected for mass fractionation by normalizing to 86Sr/88Sr =
0.1194 and 146Nd/144Nd = 0.7219, respectively. During the period
of data collection, the measured values for the JNdi–Nd and
NBS987–Sr standards were 143Nd/144Nd = 0.512119 ± 9 (n = 8)
and 87Sr/86Sr = 0.710247 ± 7 (n = 10), respectively.

4. Results

4.1. Mineral major element compositions

Electron microprobe analyses of minerals in the pyroxenite
xenoliths are presented in Table 1 and the differences in mineral
composition of the two types of pyroxenites are summarized in
Table 2.

4.1.1. Pyroxene
Clinopyroxenes from Type 1 xenoliths have much lower Mg# than

those from the peridotite xenoliths and Type 2 xenoliths. They have
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Spinels only occur in Type 2 xenoliths. Their FeO ranges from 19.7 to

34.2 wt.%, Al2O3 from 52 to 59 wt.%, and Cr2O3 contents are very low
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4.1.3. Garnet
Garnet occurs in Type 2 xenoliths. Garnets from garnet websterites

show homogeneous compositions with end-member compositions of
56%pyrope, 27% almandine and16% grossular, while garnet from garnet
clinopyroxenite is more enriched in FeO and CaO, with 41% pyrope, 38%
almandine and 20% grossular. Generally, garnets of this study are more
enriched in FeO and CaO than those fromHannuoba garnet pyroxenites
in northern North China craton (Chen et al., 2001).

4.2. Trace elements of clinopyroxene and garnet

Trace element analyses of clinopyroxene and garnet are provided
in electronic Appendix B.
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xenoliths (Fig. 4). Clinopyroxenes from Type 2 xenoliths also show
convex-up REE pattern, however, their absolute REE concentration is
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about an order of magnitude lower than that of Type 1 xenoliths, and no
Eu anomaly was observed.

Garnet in Type 2 xenoliths displays a depleted LREE and enriched
HREE pattern (Fig. 4), indicating that the garnet has achieved equi-
librium with melts.
4.3. Whole-rock major and trace elements

Major oxide and trace element contents of the pyroxenites are
presented in Table 3. The pyroxenites showawide range in composition
(Fig. 5). All samples are characterized by high MgO (15.6–23.4 wt.%)
relative to host rock. Type 1 xenoliths have the lowest Al2O3 contents
of 1.5–4.6 wt.% and the highest FeO of 6.5–14.3 wt.%, while Type 2
xenoliths have higher Al2O3 contents of 8.1–12.8 wt.%. It seems that
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there is no apparent correlation of CaO and SiO2 contents with the
petrographic variations.

Junan pyroxenites exhibit substantial variations in their trace
element concentrations (Fig. 6). Type 1 xenoliths are enriched in LREE
with (La / Yb)N = 2.4–12.1, their absolute REE concentrations and
distribution patterns are similar to those of clinopyroxene, suggesting
that clinopyroxene is the dominant reservoir of REE. All samples of
this group are characterized by negative Eu anomalies. In primitive
mantle normalized spidergram (Fig. 6), all samples display apparent
negative HFSE (Nb, Ta, Zr, Hf) and Sr anomalies with the most
pronounced negative Nb–Ta and Zr–Hf spikes in 05LG53 and
03LG09. Though depletion of LILE (Rb, Ba) relative to LREE is a com-
mon feature for all Type 1 xenoliths, LG08-11 and LG08-12 have
much higher concentrations of such elements compared with the
others.
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Table 3
Bulk-rock major oxides and trace element concentrations of the Junan pyroxenite xenoliths.

Type 1 Type 2

LG-6 03LG09 05LG53 LG08-11a LG08-12 LG08-5 LG08-8a LG08-15a

SiO2 47.9 43.7 44.6 51.8 45.5 44.1 48.3 45.8
TiO2 0.42 0.44 0.38 0.44 0.57 0.22 0.16 0.12
Al2O3 2.03 1.50 1.52 4.71 4.60 8.73 9.78 12.8
TFe2O3 12.3 25.3 24.0 12.9 12.1 9.35
MnO 0.22 0.34 0.33 0.21 0.22 0.15 0.09 0.20
MgO 17.1 20.4 20.1 21.3 15.6 18.1 20.8 17.2
CaO 18.2 7.69 8.63 10.1 16.8 15.1 11.0 13.5
Na2O 1.11 0.15 0.19 0.42 1.16 0.51 0.31 0.32
K2O 0.03 0.02 0.02 0.00 0.13 0.09 0.02 0.01
P2O5 0.03 0.11 0.02 0.10 0.03
LOI 0.31 0.18 0.14 1.85 0.72
Total 99.7 99.8 99.9 99.8 99.4 99.9 99.5 99.3
FeO 7.00 14.1 14.3 10.8 6.55 4.00 9.10
Sc 64.7 45.9 47.8 63.1 68.1 60.5 65.2 54.7
V 164 183 197 228 207 165 164 375
Cr 1474 997 1071 1840 1254 1283 1111 203
Co 39.0 93.2 72.5 61.8 51.9 73.9 73.0 62.7
Ni 110 254 181 402 170 295 305 110
Ga 5.64 9.69 9.76 7.46 9.01 8.59 9.27 18.4
Rb 0.57 0.63 0.38 3.19 3.43 1.61 1.44 7.02
Sr 87.2 37.9 27.9 95.0 129 80.7 55.5 116
Y 18.1 11.7 11.8 14.2 23.3 4.65 4.81 27.8
Zr 59.1 19.6 22.0 27.4 69.5 4.71 6.79 52.2
Nb 1.46 0.24 0.38 2.54 5.53 0.60 1.78 8.44
Cs 0.07 0.09 0.06 0.10 0.25 0.12 0.10 0.19
Ba 5.22 12.6 10.0 52.9 107 45.3 51.2 206
La 10.85 7.60 4.56 4.47 32.0 4.85 3.19 18.6
Ce 30.3 21.2 15.6 11.4 67.0 9.70 7.06 37.7
Pr 4.74 3.30 2.74 1.95 7.78 1.00 0.71 4.66
Nd 21.7 14.6 12.8 10.6 33.2 3.87 3.11 21.1
Sm 4.95 3.23 3.14 3.03 6.33 0.89 0.80 5.18
Eu 1.04 0.71 0.70 0.87 1.64 0.26 0.27 1.63
Gd 4.52 2.86 2.77 3.20 5.99 0.86 0.88 5.28
Tb 0.67 0.44 0.43 0.51 0.83 0.14 0.15 0.83
Dy 3.75 2.37 2.43 3.07 4.47 0.81 0.88 5.22
Ho 0.72 0.47 0.49 0.59 0.89 0.16 0.17 1.10
Er 1.85 1.28 1.33 1.49 2.23 0.40 0.44 2.96
Tm 0.26 0.20 0.20 0.21 0.30 0.05 0.06 0.44
Yb 1.59 1.26 1.29 1.25 1.84 0.31 0.36 2.87
Lu 0.23 0.19 0.20 0.18 0.27 0.05 0.05 0.44
Hf 1.19 0.80 0.94 1.18 1.90 0.22 0.27 1.48
Ta 0.14 0.02 0.03 0.18 0.37 0.04 0.13 0.44
Pb 1.29 0.88 0.97 1.43 2.72 0.92 1.54 1.16
Th 0.17 0.08 0.06 0.26 0.69 0.07 0.19 0.86
U 0.04 0.03 0.03 0.12 0.18 0.04 0.05 0.20

a The major oxides of these samples are estimated according to the composition of consisting minerals and their proportions.
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Type 2 xenoliths also exhibit enriched LREE patterns with (La /
Yb)N = 4.5–10.7. These rocks are Eu anomaly free and show no
convex-up REE patterns as their clinopyroxenes do. LG08-15 has a
much higher absolute REE concentration than the other two samples.
All samples are enriched in LILE and have higher Rb and Ba contents
than those of Type 1 xenoliths. Negative Nb–Ta and Zr–Hf anomalies
are shown by all samples, positive Pb spikes are also notable for all
samples (Fig. 6).
4.4. Whole-rock Sr–Nd isotopes

Sr and Nd data are presented in Table 4 and illustrated in Fig. 7.
Junan pyroxenites show an extremely wide range of Sr and Nd
isotopic compositions with εNd varying from −1.1 to −28.5 and
87Sr/86Sr from 0.7054 to 0.7088. Type 1 xenoliths cluster in the
right bottom corner of the Sr–Nd space with the most radiogenic
Sr and the least radiogenic Nd isotopic compositions. Type 2 xeno-
liths show a restricted 87Sr/86Sr ratios of 0.70538–0.70545, while
their Nd isotopic ratios vary substantially with εNd from −1.1
to −15.3.

5. Discussion

5.1. Estimates of equilibrium conditions for pyroxenite xenoliths

Mineral assemblages can be used to estimate the equilibrium
temperature and pressure of the formation for these pyroxenites,
as mineral phases in all pyroxenites show equilibrated textures.
The two-pyroxene geothermometer of Wells (1977) is used in this
paper for temperature estimation and the results are listed in
Table 5. The results indicate that the pyroxenites have equilibrated
at temperatures of 828–935 °C. We also compared the temperatures
of pyroxenites with those of mantle peridotite and lower crust
granulite xenoliths entrained in the same host rock. The equilibra-
tion temperatures of pyroxenites are similar to those of granulite,
and much lower than those of peridotites (Fig. 8). Although it is dif-
ficult to calculate the depths at which the pyroxenites were formed,
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it can be speculated that the pyroxenites were mainly formed at
lower crustal depths assuming that all kinds of xenoliths were
equilibrated under the same geothermal conditions.

5.2. Websterite xenoliths: high pressure cumulates of magmas involving
subducted continental crust

The petrogenesis of pyroxenite nodules entrained in alkali ba-
salts has long been a controversial issue as we mentioned in the
Introduction section, and different models have been proposed to
account for their formation. One of the debates concerns whether
the pyroxenites represent partial melts of peridotites that have
solidified within the mantle (Bodinier et al., 1987; Ho et al., 2000).
Many experiments have been performed on peridotites to constrain
the compositions of mantle partial melting products (Falloon and
Green, 1987; Falloon et al., 1997; Kushiro, 2001). Comparisons of
the Type 1 pyroxenites with the partial melts of peridotites pro-
duced by experiments reveal that the pyroxenites have much higher
MgO and Al2O3 contents, and generally lower SiO2 (Fig. 5). In addi-
tion, the convex-up REE patterns exemplified bymost of thewebsterites
and depletion of highly incompatible elements are also inconsistent
with the geochemical features of partial melts extracted from perido-
tites. It is thus concluded that the websterite xenoliths are not primary
melts or frozen melts from the mantle peridotites.

The convex-up REE patterns shown by most of the websterites
and their constituent clinopyroxenes, togetherwith the low abundances
of incompatible elements are compelling evidence that the websterites
represent fractionally segregated products from magmas under high
pressure. As in situ major and trace element analyses of clinopyroxenes
have indicated that the clinopyroxenes are homogeneous, implying that
they have reached equilibrium with their parental melts, the parental
melt compositions can be estimated using the clinopyroxene/basaltic
melt partition coefficients. The partition coefficients used in this study
are taken from Hart and Dunn (1993), Hauri et al. (1994), and Johnson
(1998). In the primitive mantle normalized diagram (Fig. 9), the melts
display apparent HFSE depletion, a feature that the host rock is devoid
of, therefore, the host basalts can be precluded as the precursor melts
of the websterite xenoliths. However, the strongest argument against a
link between the websterites and the host basalts comes from the Sr
and Nd isotopic compositions. These are quite different from those of
MORB, OIB and host basalts, which are thought to be generated from
asthenospheric mantle. This implies that the parental magmas of
websterites are not from an asthenospheric mantle source.

In general, the trace element distribution patterns of the precur-
sor melts of websterite xenoliths are similar to those of Cretaceous
basalts and pyroxenites they bear (Fig. 9) (Zhang et al., 2002; Ying
et al., 2006b; Zhang et al., 2007), especially in the aspect of HFSE
depletion. It is generally accepted that the depletion of HFSE is a
common feature of lavas of active continental margins which sug-
gests that the mantle source had been contaminated by fluids
released from subducted slabs (Briqueu et al., 1984; Ringwood,
1990). However, the enriched Sr and Nd isotopic ratios (87Sr/86Sr
ratios up to 0.7085 and εNd as low as −29) are inconsistent with
those of arc volcanic rocks, precluding an origin of the precursor
melts in the mantle wedge. The extremely enriched Sr and Nd isoto-
pic compositions, along withmarked HFSE depletion unambiguously
require the involvement of continental crust in their mantle sources.

When we compare the Sr–Nd isotopic compositions of websterite
xenoliths with those of Cretaceous volcanic rocks and mafic intru-
sions from southern Shandong (Fig. 7), it is clear that they share a
common highly enriched signature. Based on detailed geochemical
investigation of Cretaceous extrusive and intrusive rocks, it has
been widely accepted that the lithospheric mantle beneath southern
Shandong is characterized by extremely enriched Sr and Nd isotopic
ratios, and this feature was acquired through extensive interaction
with melts derived from the subducted continental crust of the
Yangtze craton (Zhang et al., 2002; Xu et al., 2004b; Ying et al.,
2006b). However, the discernable discrepancy in Sr and Nd isotopic
compositions between the Cretaceous extrusive and intrusive rocks
and the websterites suggests that the websterites were not segregated
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from those Cretaceousmagmas. As equilibrium temperature estimations
indicate that the websterites were formed at lower crustal depths, it
is reasonable to envisage that the primary magmas from which the
websterite fractionally segregated were contaminated by the surround-
ing lower crust while underplating from the mantle. Such speculation
is well supported by the fact that all websterite xenoliths fall into the
Sr–Nd isotopic region defined by mixing between the NCC lower crust
represented by Junan granulite xenoliths and the enriched lithospheric
mantle defined by the Cretaceous basalts.

Alternatively, the thickening and foundering of the NCC lower
crust into the mantle resulting from the Triassic collision between
the NCC and Yangtze craton might also be a viable mechanism to
modify the lithospheric mantle to obtain an enriched isotopic signa-
ture (Xu et al., 2008), however, the lower crust beneath Junan has
much lower 87Sr/86Sr ratios as manifested by the granulite xenoliths,
suggesting that the crustal components in websterite xenoliths were
unlikely acquired through direct delamination of the NCC lower
crust.

Given the similarity in temperature between the granulites and
the pyroxenites, possibly suggesting formation at the same depth,
we must evaluate the possibility that the websterites were not
formed from melts of mantle enriched by continental subduction,
but instead represent pyroxenites that have been in the lower crust
Table 4
Sr and Nd isotopic compositions of Junan pyroxenite xenoliths.

Sample 87Rb/86Sr 87Sr/86Sr 2σ 8

Type 1 LG-6 0.2339 0.708844 0.000010 0
03LG09 0.3225 0.708822 0.000010 0
03LG09 dup. 0.708855 0.000014
05LG53 0.0175 0.708824 0.000010 0
LG08-12 0.0477 0.708362 0.000013 0

Type 2 LG08-5 0.0411 0.705458 0.000008 0
LG08-8 0.0620 0.705388 0.000008 0
LG08-15 0.1669 0.705394 0.000014 0

a Initial 87Sr/86Sr and eNd(t) are corrected to an age of 67 Ma.
since Proterozoic or longer. We cannot preclude this possibility on
the basis of age as we are not able to obtain age data for the
websterites. However, we can consider this issue from their isoto-
pic compositions. The websterites were not cogenetic with the
Paleoproterozoic lower crust represented by the Junan granulite
xenoliths as they show contrasting Sr–Nd isotopic ratios corrected
back to the age of the Junan granulites (Ying et al., 2010). If we
presume that the websterites were formed from mantle melts by
underplating and intrusion into the lower crust during the Protero-
zoic, the websterites should show superchondritic initial Nd isoto-
pic ratios, since the mantle in the Proterozoic time is depleted
in terms of Sr and Nd isotopes. However, the initial Nd isotopic
ratios calculated assuming a Proterozoic formation age (2.0 Ga)
are subchondritic (εNd = −13 to −28). Therefore, we speculate
that it is very unlikely that the websterites have been in the lower
crust since Proterozoic or longer.

In summary, the geochemical features of websterite xenoliths
argue for their cumulative origin and their formation may have
proceeded as the following: subsequent to the collision of the NCC
with the Yangtze craton and formation of Dabie–Sulu ultrahigh
pressure orogenic belts, the lithospheric mantle of the NCC was
intensely metasomatized by the melt derived from the recycled
Yangtze lower crust. Magmas derived from partial melting of thus
7Sr/86Sria 147Sm/144Nd 143Nd/144Nd 2σ εNd (t)a

.708621 0.1408 0.511585 0.000008 −20.5

.708515 0.1501 0.511179 0.000009 −28.5
0.511188 0.000012

.708807 0.1432 0.511249 0.000006 −27.1

.708317 0.1336 0.511715 0.000006 −18.0

.705419 0.2098 0.512583 0.000011 −1.1

.705329 0.1919 0.512150 0.000008 −9.5

.705235 0.1644 0.511855 0.000009 −15.3
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formed enriched mantle source may have been erupted in the
Cretaceous as manifested by the Cretaceous basalts. Some magmas
may have underplated the NCC lower crust and have been contami-
nated by the surrounding lower crust material. The websterites
were then generated by fractional segregation from such melts.
5.3. Garnet pyroxenites: cumulates of melts with contributions from
subducted oceanic crust

Garnet pyroxenites are traditionally interpreted as fractionation
products of basaltic magmas in equilibrium with mantle peridotite
(Gonzaga et al., 2010), whereas, increasing evidence has shown that
garnet pyroxenites may be generated as metasomatic rocks resulting
from interaction of reactive fluid and/or melts with mantle peridotites
(Mukhopadhyay and Manton, 1994; Garrido and Bodinier, 1999; Liu
et al., 2005), or as remnants of recycled oceanic crust or melts derived
from such materials (Allegre and Turcotte, 1986; Xu, 2002; Yu et al.,
2010).

The equilibrium temperatures of garnet pyroxenites ranging from
828 to 855 °C, are much lower than those of peridotite, but overlap
those of granulite xenoliths (Fig. 8). This implies that the garnet py-
roxenites were also formed in the lower crust as are the websterites,
rather than in the upper mantle. As pyroxenites generated either by
reaction between melts and mantle peridotite or by metamorphism
of recycled oceanic crust are all derived from the mantle (Allegre
and Turcotte, 1986; Liu et al., 2005; Yu et al., 2010), these twomodels
cannot explain the genesis of Junan garnet pyroxenite xenoliths. In
addition, the absence of composite xenoliths consisting of peridotite
veined by pyroxenite, which is taken as solid petrographic evidence
for the metasomatic origin of pyroxenite (Liu et al., 2005) and the
lack of positive Sr and Eu anomalies, which are diagnostic of
Table 5
Temperature (°C) estimations for Junan pyroxenites.

Sample T (Wells)

Type 1
LG-6 935
03LG09 883
05LG53 858
LG08-11 874
LG08-12 895

Type2
LG08-5 828
LG08-8 855
LG08-15
pyroxenites being recycled oceanic crust (Yu et al., 2010) are also
not in favor of these twomodels. Here we proposed that these garnet
pyroxenite xenoliths, like the websterite xenoliths, were formed as
cumulates, but from different precursor melts. The normal REE
pattern of garnet implies that the garnet pyroxenite had been in
equilibrium with melts (Fig. 4).

The high Mg# and Ni content of Junan garnet pyroxenites are
consistent with an origin of their precursor melts in the mantle,
however, the sharp contrast in composition with those of websterite
xenoliths suggests that their precursor melts are not the same. The
calculated hypothetical melts in equilibrium with the garnet pyrox-
enites have much lower REE concentrations although they are also
enriched in LREE relative to HREE. In the primitive mantle normal-
ized diagram, the hypothetical melts are characterized by apparent
HFSE depletion, suggesting the involvement of crustal components
in their sources (Fig. 9).

The garnet pyroxenites exhibit much lower 87Sr/86Sr, but higher
εNd values than those of websterite xenoliths. As discussed previ-
ously, the subducted Yangtze lower continental crust probably
played a significant role in the formation of the mantle source for
the parental magma to the websterite xenoliths. The unradiogenic
87Sr/86Sr and more radiogenic Nd isotopic ratios of the garnet pyrox-
enites thus preclude the involvement of recycled Yangtze lower
continental crust in their mantle sources. Alternatively, subducted
oceanic crust may contribute to the formation of mantle sources of
parental melts to the garnet pyroxenites.

Geochemical studies of late Mesozoic mafic rocks have revealed
that the lithospheric mantle beneath the western Shandong is
an aged, enriched mantle with very unradiogenic Nd (εNd as low
as −19) coupled with moderately radiogenic Sr (initial 87Sr/86Sr
ratios around 0.7055), which was inherited from the Archean litho-
spheric keel (Guo et al., 2003). It has been demonstrated that the
altered oceanic crust usually shows a constant Nd isotopic value,
but it has a wide range of 87Sr/86Sr ratios due to the interaction
with sea water (McCulloch et al., 1980). As shown in Fig. 7, the gar-
net pyroxenites define a mixture between altered oceanic crust
and enriched lithospheric mantle represented by the mafic rocks
from West Shandong. It is thus likely that the garnet pyroxenites
were formed as follows: prior to the Triassic collision between the
Yangtze craton and the NCC, the altered Proto-Tethyan oceanic
crust was subducted beneath the North China craton, and the initial-
ly enriched lithospheric mantle was metasomatized by melts de-
rived from the subducted oceanic crust, which resulted in the
formation of the mantle source of garnet pyroxenites. The partial
melts derived from the thus formed mantle during post orogenic
extension intruded into the lower crust and suffered fractional
segregation, which led to the crystallization of garnet pyroxenites.
Compared with the highly silicic, LILE and LREE enriched melts
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derived from the continental crust, which metasomatized the man-
tle source of websterite, the oceanic crust derived melts that
interacted with the mantle source of garnet pyroxenites which was
less enriched in LILE and LREE, and which might explain the trace
element differences between the two types of xenoliths.

In terms of this model, the subduction of oceanic crust was
followed by the subduction of continental crust. Thus we speculate
that the mantle source of the garnet pyroxenites acquired its
enriched features much earlier than that of the websterite xenoliths,
nevertheless, it is quite difficult to test this hypothesis given the
limited dataset.
5.4. Implications for lithospheric modification of the North China craton

It is widely accepted that the initially old, thick and refractory
lithospheric mantle beneath the North China craton was replaced
by young, thin and fertile mantle in the Mesozoic (Griffin et al.,
1998; Menzies and Xu, 1998; Xu, 2001; Gao et al., 2002b; Zheng
et al., 2007; Zhang et al., 2009). The collision between the Yangtze
craton and the North China craton in the Triassic and the subsequent
subduction of Yangtze lower crust is thought to play a vital role in the
transformation of the lithospheric mantle, especially in the southern
part of the North China craton (Gao et al., 2002b; Zhang et al., 2002,
2003). Detailed geochemical studies of Mesozoic mafic rocks from
the southern part of North China craton demonstrated that their
highly enriched isotopic signature can only be accounted for by the
addition of significant amounts of crustal-derived silicic melts to
their source region. The geochemical characteristics of websterite
xenoliths in this study reconfirmed the contribution of continental
crustal materials in the lithospheric mantle (Zhang et al., 2007,
2010). It is undoubted that there must have been oceanic crustal
subduction prior to the continental crust subduction during the
amalgamation of the North China craton with the Yangtze craton.
However, little evidence had been found so far of this subducted
oceanic crust. As we discussed above, the garnet pyroxenite xenoliths
of this study may have been derived from a mantle source which had
been metasomatized by melts released from the subducted Proto-
Tethyan oceanic crust. Therefore, we propose that not only the
subducted continental crust but also the recycled oceanic crust played
a significant role in modifying the lithospheric mantle of the North
China craton.
6. Conclusions

The websterite and garnet pyroxenite xenoliths entrained in the
Junan basaltic dike are cumulates that crystallized at lower crustal
depths. The precursor melts of websterite xenoliths were derived
from a mantle source which may have been intensely modified by
the recycled lower continental crust of the Yangtze craton, while
the precursor melts of garnet pyroxenite were derived from an
enriched lithospheric mantle that may have been metasomatized
by melts released from the Proto-Tethyan oceanic crust prior to
the subduction of continental crust of Yangtze craton. The occur-
rences of these pyroxenites provide further evidence that both the
subducted continental crust and the recycled oceanic crust during
the collision between the North China craton and the Yangtze craton
played a significant role in modifying the lithospheric mantle of the
North China craton.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.chemgeo.2013.08.006.
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