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ABSTRACT
The phase-shift-plus-interpolation and extended-split-step-Fourier methods are
wavefield-continuation algorithms for seismic migration imaging. These two methods
can be applied to regions with complex geological structures. Based on their unified
separable formulas, we show that these two methods have the same kinematic char-
acteristics by using the theory of pseudodifferential operators. Numerical tests on
a Marmousi model demonstrate this conclusion. Another important aspect of these
two methods is the selection of reference velocities and we explore the influence of
the selection of reference velocities by comparing the geometric progression method
and the statistical method. We show that the geometric progression method is simple
but does not take into account the velocity distribution while the statistical approach
is relatively complex but reflects the velocity distribution.

INTRODUCTION

Seismic migration is a wave-equation-based process that cre-
ates the image of structures within the earth form recorded
data on the surface. Historically, it was a process of moving
reflection events to their true positions by collapsing diffrac-
tion events on unmigrated sections. With its scope increasingly
broadening, seismic migration has now become a central step
in seismic data processing (Gray et al. 2001).

Seismic migration algorithms can be classified into two cat-
egories: integral methods and wavefield-continuation meth-
ods (Biondi 2006). Wavefield-continuation methods are more
suited to regions with complex geology. We will consider
two kinds of wavefield-continuation methods: phase-shift-
plus-interpolation (PSPI) (Gazdag and Sguazzero 1984) and
extended-split-step-Fourier methods (Kessinger 1992; Biondi
2006). These two methods belong to separable approxima-
tions of a one-way wave operator (Chen and Liu 2004, 2006;
Ferguson and Margrave 2005; Chen, Liu and Zhang 2007).
In this paper, we will develop unified separable formulas for
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these two methods, which enable us to obtain a clear under-
standing of their separable properties.

In the PSPI method, a time-shift is applied to the ini-
tial wavefield before wavefield continuation, whereas in the
extended-split-step-Fourier method, the time-shift is applied
after the wavefield is continued with a background velocity.
The relationship between these two methods can be explained
by the theory of pseudodifferential operators. In this frame-
work, the two methods can be interpreted as two different
pseudodifferential operators. These two operators have the
same characteristics and therefore describe the same kinematic
properties for wave propagation. This accounts for their sim-
ilar imaging effects in terms of the position and shape of the
geological structure.

For both methods, the selection of reference velocities
is needed. One approach was presented in Gazdag and
Sguazzero (1984). The reference velocities are obtained in
terms of the ratio of maximum velocity and minimum ve-
locity at some depth as well as a common ratio for which a
geometric progression for reference velocities is formed. An-
other statistical method for determining the reference veloci-
ties was suggested by Bagaini, Bonomi and Pieroni (1995). An
implementation program of the statistical method is available
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(Han 1998). For the statistical method, the velocity interval
between the maximum and minimum velocities of the veloc-
ity model is divided into L subintervals and then the reference
velocities at some depth are determined by the distribution
of the velocities at that depth. In this paper, we will make a
comparison of the geometrical progression and the statistical
methods.

In the next section, we will briefly review the concept of sep-
arable approximation for the one-way wave operator. Then
we will present the separable formulations for the PSPI and
extended-split-step-Fourier methods. This is followed by an
analysis of their relationship. We then discuss the issue of
selecting reference velocities. Finally, we perform some nu-
merical experiments to demonstrate the theoretical analysis.

SEPARABLE AP PR OXI MA T I ON
FOR ONE-WAY WAVE OPERATOR

To begin with, we recall the concept of separable approxi-
mation for the one-way wave operator (Chen and Liu 2004,
2006; Chen et al. 2007).

Consider the one-way wave operator in frequency-
wavenumber domain

A(x, y; kx, ky) = exp

⎧⎨
⎩i

√
ω2

v(x, y, z̄)2
− (k2

x + k2
y) �z

⎫⎬
⎭ , (1)

where ω is circular frequency, kx, ky are wavenumbers, v is
the velocity, �z is the continuation depth and z̄ = z + 1

2 �z.
The separable approximation for the one-way operator (1)

is

A(x, y; kx, ky) ∼
s∑

j=1

f j (x, y)g j (kx, ky), (2)

where fj(x, y) (j = 1, 2, . . . , s) are functions in x and y only,
gj(kx, ky) (j = 1, 2, . . . , s) are functions in kx and ky only and
s refers to the order of the separable approximation.

The wavefield-continuation formula can be written in the
following form

U(z + �z, x, y) = 1
4π2

∫
[A(x, y; kx, ky)Ũ(z, kx, ky)]

× exp{i(xkx + yky)}dkxdky, (3)

where U(x, y, z) is the wavefield and Ũ(kx, ky, z) is its Fourier
transform with respect to x and y.

The inverse Fourier transform in equation (3) depends on
the spatial variables x and y and therefore the FFT alogrithm
can not be applied directly.

Using the separable approximation (2), formula (3) be-
comes

U(z + �z, x, y)

= 1
4π2

s∑
j=1

[
f j (x, y)

∫
g j (kx, ky)Ũ(z, kx, ky)]

× exp{i(xkx + yky)}dkxdky

]
. (4)

Based on equation (4), we can use FFT to greatly improve
computational efficiency.

There are two kinds of separable approximations: local sep-
arable approximations (such as the split-step Fourier method
(Stoffa et al. 1990) and the generalized-screen method (Le
Rousseau and de Hoop 2001) and global separable approxi-
mations (such as the optimal separable approximation (Chen
and Liu 2004, 2006). For details, see Chen and Liu (2006). In
the next section, we will show that the PSPI and extended-
split-step-Fourier methods are both separable approxima-
tions.

SEPARABLE APPROXIMATION FOR
PHASE-SHIFT-PLUS - INTERPOLATION
AND EXTENDED-SPL IT -STEP -FOURIER
METHODS

Phase-shift-plus-interpolation (PSPI) method The PSPI
method was proposed by Gazdag and Sguazzero (1984). It
consists of phase-shift wavefield continuation with constant
reference velocity and interpolation between different wave-
filelds continued with different reference velocities. In this
method, a time-shift term is first applied to the initial wave-
field before wavefield continuation.

To gain a deep understanding of the PSPI method as a
whole, we need to derive a unified formula that accounts
for the three steps of PSPI: 1) a time-shift term applied to
the initial wavefield; 2) phase-shift with reference velocities
and 3) interpolation between wavefileds. This unified for-
mula was not proposed in Gazdag and Sguazzero (1984).
Ferguson and Margrave (2005) suggested an approximately
unified formula. However, their formula does not give the
time-shift term and the interpolation factors explicitly. Here,
we will derive a unified formula of PSPI that is in the form of
separable approximation. This formula is important for us to
understand the kinematic characteristic of the PSPI method.

Suppose that there are n reference velocities:

vmin = v1 < v2 < · · · < vn−1 < vn = vmax.
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The unified separable approximation for PSPI reads:

A(x, y; kx, ky)

∼
n∑

j=1

hj (x, y)
−−−−−−−−−−−−→
exp

{
i

ω

v(x, y)
�z
}

× exp

{
i

(√
ω2

v2
j

− k2
x − k2

y − ω

v j

)
�z

}
, (5)

where hj(x, y) (j = 1, 2, . . . , n) are interpolation factors with
the following form:

h1(x, y) =
⎧⎨
⎩

v2−v(x,y)
v2−v1

, v1 � v(x, y) < v2,

0, otherwise.

hj (x, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

v(x,y)−v j−1
v j −v j−1

, v j−1 � v(x, y) < v j ,

v j+1−v(x,y)
v j+1−v j

, v j � v(x, y) < v j+1,

0, otherwise.

for j = 2, 3, . . . , n − 1.

hn(x, y) =
⎧⎨
⎩

v(x,y)−vn−1
vn−vn−1

, vn−1 � v(x, y) � vn,

0, otherwise.

Here the arrow in the term
−−−−−−−−−−−−−−−→
exp

{
i
(

ω

v(x, y)

)
�z
}

indicates

that when the one-way operator applies to a wavefield,
this term first multiplies with the wavefield. In Gazdag and
Sguazzero (1984), the interpolation is performed on the ampli-
tude and phase of the wavefileds separately. Here we consider
the interpolation applied directly to the wavefields. According
to our experience, these two methods of interpolation produce
similar results.

The approximation (5) can be rewritten as

A(x, y; kx, ky) ∼
n∑

j=1

f j (x, y)g j (kx, ky), (6)

where

f j (x, y) = hj (x, y), j = 1, 2, . . . , n,

g j (kx, ky) =
−−−−−−−−−−−−−−−→
exp

{
i
(

ω

v(x, y)

)
�z
}

× exp

{
i

(√
ω2

v2
j

− k2
x − k2

y − ω

v j

)
�z

}
.

Therefore, PSPI is a separable approximation.
Extended-split-step-Fourier (ESSF) method The extended-

split-step-Fourier method was first proposed by Kessinger

(1992). The multiple reference velocity logic of PSPI is ap-
plied to the split-step Fourier method but no interpolation is
conducted. Biondi (2006) added the interpolation step to the
extended-split-step-Fourier method, which is the extended-
split-step-Fourier method we consider in this paper. Therefore
the extended-split-step-Fourier method under consideration
here also consists of phase shift and interpolation. Its differ-
ence with PSPI is that the time-shift is applied after wavefield
continuation instead of before wavefield continuation. Now
we derive the unified separable approximation for ESSF.

Suppose that there are n reference velocities:

vmin = v1 < v2 < · · · < vn−1 < vn = vmax.

The unified separable approximation for extended-split-step-
Fourier reads:

A(x, y; kx, ky) ∼
n∑

j=1

hj (x, y) exp
{

i
(

ω

v(x, y)
− ω

v j

)
�z
}

× exp

{
i

√
ω2

v2
j

− k2
x − k2

y �z

}
. (7)

where hj(x, y) (j = 1, 2, . . . , n) are the same interpolation fac-
tors as in equation (5). The approximation (7) can be rewritten
as

A(x, y; kx, ky) ∼
n∑

j=1

f j (x, y)g j (kx, ky). (8)

where

f j (x, y) = hj (x, y) exp
{

i
(

ω

v(x, y)
− ω

v j

)
�z
}

,

g j (kx, ky) = exp

{
i

√
ω2

v2
j

− k2
x − k2

y �z

}
.

Therefore, ESSF is indeed a separable approximation.

RELATIONSHIP BETWEEN
PHASE-SHIFT-PLUS - INTERPOLATION
AND EXTENDED-SPL IT -STEP -FOURIER
METHODS

Now we explore the relationship between PSPI and extended-
split-step-Fourier (ESSF) based on the theory of pseudodiffer-
ential operators. See the Appendix for some basic facts on
pseusodifferential operators that will be needed in the follow-
ing development.
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We set

L(x, p; ω) = exp
{

i
(

ω

v(x, y)
− ω

v j

)
�z
}

× exp

{
i

√
ω2

v2
j

− k2
x − k2

y �z

}
, (9)

where x = (x1, x2) = (x, y) and p = (p1, p2) = (kx, ky).
Based on equation (9), we can define two operators:

L(
1
x,

2
Dx; ω)u(x)

= F −1
p→x

[
exp

{
i

(√
ω2

v2
j

− k2
x − k2

y − ω

v j

)
�z

}

× Fx→ p

(
exp

{
i

ω

v(x, y)
�z
}

u(x)
)]

, (10)

L(
2
x,

1
Dx; ω)u(x)

= exp
{

i
(

ω

v(x, y)
− ω

v j

)
�z
}

× F −1
p→x

[
exp

{
i

√
ω2

v2
j

− k2
x − k2

y �z

}
Fx→ pu(x)

]
, (11)

where u(x) is the wavefield to be continued downward. See
the appendix for the meaning of the notations in equations
(10) and (11).

The operators defined in equations (10) and (11) corre-
spond to the separable formulations for the PSPI (equation
(5)) and the extended-split-step-Fourier (equation (7)) respec-
tively when they are applied to a wavefield. The two opera-
tors (10) and (11) have the same characteristics, i.e., the same
traveltime function (see the appendix). Therefore, the PSPI and
ESSF methods have the same kinematic imaging effect, but the
dynamics they describe are different. It should be noted that
the one-way wave operator (1) only describes the kinematic
characteristics of wave propagation and does not account for
the dynamic characteristics of wave propagation correctly (Le
Rousseau and de Hoop 2001). Therefore, as approximations
of operator (1), neither PSPI nor extended-split-step-Fourier
gives a correct description of dynamics of wave propagation.
In order to account for both kinematics and dynamics, a true-
amplitude one-way operator is needed. The true-amplitude
one-way operator is a modified version of equation (1). For
details, see Zhang, Zhang and Bleistein (2005).

SELECTION OF REFERENCE V ELOCITIES

An important issue in implementing PSPI and extended-split-
step-Fourier is the selection of reference velocities. There

are two approaches available: geometric progression method
(Gazdag and Sguazzero 1984) and the statistical method
(Bagaini et al. 1995; Han 1998). We will present these two
methods and give some theoretical analysis. For simplicity,
we will only consider the two-dimensional case. In the next
section, we will perform some numerical comparisons in the
case of the Marmousi model.

Geometric progression method (Gazdag and Sguazzero
1984). Let R denote the ratio of the maximum velocity vmax

and the minimum velocity vmin at some depth and let ρ denote
the common ratio for which the consecutive reference veloc-
ities form a geometric progression (see below). The number
of reference velocities m is determined by the smallest integer
satisfying

ρm−1 � R. (12)

Therefore, we obtain

m =
⎧⎨
⎩

ln R
ln ρ

+ 1, if ln R
ln ρ

is an integer,⌊
ln R
ln ρ

+ 1
⌋

+ 1, if ln R
ln ρ

is not an integer,

where � · � denotes the integer part of a real number.
Then the consecutive reference velocities are chosen as

v1, v2, . . . , vm−1, vm, where v1 = vmin,

and
vi+1

vi
= ρ, i = 1, 2, . . . , m − 1.

Based on the above definition of m, we have

vmax � vm < ρ vmax.

Statistical method (Bagaini et al. 1995; Han 1998). Let vmin

and vmax denote the minimum and maximum velocities in the
velocity model, respectively. We set

ci = vmin + i(vmax − vmin)/L, i = 0, 1, 2, . . . , L,

where L is an integer. Then the interval [vmin, vmax ] is divided
into L subintervals:

[
c0, c1

)
,
[
c1, c2

)
, . . . ,

[
cL−2, cL−1

)
,
[
cL−1, cL

]
.

Suppose that there are nx lateral velocities v(xl, z)(l = 1,
2, . . . , nx) at some depth. These velocities will fall into one
of the above L subintervals. Let ni denote the number of the
velocities that fall into the interval [ ci, ci+1), (i = 0, 1, . . . ,
L − 2) and nL−1 the number of the velocities falling into the
interval[ cL−1, cL ].
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Let Pi = ni/nx, i = 0, 1, . . . , L − 1. Note that 0 � Pi � 1
and

∑L−1
i=0 Pi = 1. Then we construct a number:

B = exp

⎡
⎣∑

Pi �=0

ln P−Pi
i

⎤
⎦ =

∏
Pi �=0

P−Pi
i . (13)

Now we recall a well-known inequality (Hardy, Littlewood
and Pólya 1952):

aP1
1 aP2

2 · · · aPn
n �

(
P1a1 + P2a2 + · · · + Pnan

P1 + P2 + · · · + Pn

)P1+P2+···+Pn

,

(14)

where ai > 0, Pi > 0, (i = 1, 2, . . . , n) and the equality holds
only when a1 = a2 = . . . = an. Using the inequality (14) and
noting that 0 � Pi � 1 and

∑L−1
i=0 Pi = 1, we can easily prove

that the number in equation (13) satisfies

1 � B � L. (15)

Finally, the number of the reference velocities is chosen as

m = �B + 0.5� + 1, (16)

where � · � again denotes the integer part of a real number.
Using the inequality (15), we can obtain

2 � m � L + 1. (17)

To determine the reference velocities, we set Y0 = 0 and
Yj = ∑ j−1

i=0 Pi , j = 1, 2, . . . , L. We then set v0 = vmin and if
there exits some j such thatYj < i/(m − 1) � Yj+1, then the
reference velocity is determined as follows

vi = c j + i/(m − 1) − Yj

Yj+1 − Yj
(c j+1 − c j ), i = 1, 2, . . . , m − 1.

(18)

Then we have the m reference velocities

v0, v1, . . . , vm−1.

Based on equation (18) and the definition of Yj, we can
conclude that vm−1 = cj+1. Let lvmax denote the maximum
velocity within the depth under consideration. If lvmax = vmax,
then vm−1 = cj+1 = vmax and if lvmax < vmax, then vm−1 = cj+1 >

lvmax.
In the Han’s program, the reference velocity vm−1 is slightly

modified by ṽm−1 = 1.005vm−1. The purpose of this modifica-
tion is just to make the subsequent interpolation implementa-
tion more convenient.

NUMERICAL EXPE R I MEN T S

In this section, we will perform some numerical experiments.
First, we compare the two methods of selecting reference ve-
locities. Second, we compare the imaging effect of PSPI and

extended-split-step-Fourier. In both numerical examples, we
use the Marmousi model.

For both methods for selecting reference velocities, when
the ratio of the maximum and minimum velocities at some

Figure 1 The Marmousi velocity model (a). The minimum and max-
imum velocities for depth levels (b). The ratio of maximum and min-
imum velocities for depth levels (c).

C© 2009 European Association of Geoscientists & Engineers, Geophysical Prospecting, 58, 429–439



434 J.-B. Chen and S.-Y. Du

1 150 300 450 600 750
0

1

2

3

4

5

6

7

8

Depth levels

N
u

m
b

e
r 

o
f 

re
fe

re
n

c
e

 v
e

lo
c
it
ie

s
Geometric progression method (ρ=1.2)a) 

1 10 20 30 40 50
0

1

2

3

4

Depth levels

N
u

m
b

e
r 

o
f 

re
fe

re
n

c
e

 v
e

lo
c
it
ie

s

Geometric progression method (ρ=1.2)
b) 

450 470 490 510 530 550
3

4

5

6

7

8

Depth levels

N
u

m
b

e
r 

o
f 

re
fe

re
n

c
e

 v
e

lo
c
it
ie

s

Geometric progression method (ρ=1.2)
c) 

1 150 300 450 600 750
0

1

2

3

4

5

6

7

8

Depth levels

N
u

m
b

e
r 

o
f 

re
fe

re
n

c
e

 v
e

lo
c
it
ie

s

Geometric progression method (ρ=1.5)
d) 

Figure 2 Geometrical progression method for selecting reference velocities. (a) The result for ρ = 1.2; (b) and (c) are the enlarged portion of
(a); (d) the result for ρ = 1.5.

depth is less than some upper bound B, we will use only one
reference and no interpolation is needed. In our experiments,
we will choose B = 1.01 as used in the Han’s program.

The Marmousi model consists of in a 750 by 737 velocity
matrix (a simplified version) (Fig. 1a). The maximum veloc-
ity is 5500 m/s and the minimum velocity is 1500 m/s. The
maximum and minimum velocities and their ratio for different
depth levels are displayed in Figs 1(b) and 1(c), respectively.
The maximum ratio is about 2.25.

We first examine the geometrical progression method. We
first set ρ = 1.2. Figure 2(a) shows the number of reference ve-
locities for different depth levels. Figure 2(b,c) is the enlarged
portion of Fig. 2(a). For the first 7 depth levels, the ratio
of maximum and minimum velocities is less than B = 1.01

and therefore there is only one reference velocity. For other
depth levels, the number of reference velocities is larger than
1 and the maximum number of reference velocities is 6. The
number of reference velocities will decrease with increasing ρ.
Figure 2(d) shows the corresponding result for ρ = 1.5.

Now we explore the statistical approach. We first choose
L = 10. Figure 3(a) shows the number of reference velocities
for different depth levels. In this case, the maximum number
of reference velocities is 7. The number of reference velocities
will increase with increasing L. The corresponding results for
L = 5 and L = 15 are shown in Figs 3(b) and 3(c), respectively.
Figure 3(d) shows the result by using the local maximum and
minimum velocities at depth levels. We can see that there are
a large number of reference velocities even for low lateral
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Figure 3 Statistical method for selecting reference velocities. (a) For L = 10; (b) for L = 5; (c) for L = 15; (d) for L = 10 but with local minimum
and maximum velocities.

velocity variations, which is unnecessary. Therefore the statis-
tical method should use the maximum and minimum velocities
of the entire velocity model.

Now we make some comparisons between these two meth-
ods. For a given model, the number of reference velocities
is determined by the common ratio ρ for the geometric pro-
gression method while for the statistical method it is deter-
mined by L. The geometric progression method is very simple
but does not reflect the distribution of the velocities. On the
other hand, the statistical method is relatively complicated but
does account for the velocity distribution. Figure 4 shows the
reference velocities for a particular depth determined by the
geometric method (a) and the statistical method (b). For the
geometric method, the reference velocities form a geometric
progression. For the statistical method, the reference velocities

reflect the velocity distribution where more reference velocities
are concentrated on an area with high velocity distribution.

Next, we compare the imaging effect of PSPI and extended-
split-step-Fourier on the Marmousi model. First, we use the
statistical method to determine the reference velocities. We set
L = 10. To begin with, we make a modification in the Han’s
statistical method. The statistical method uses the minimum
and maximum velocities of the entire velocity model to de-
fine the number of reference velocities and uses the minimum
velocity of the entire velocity as the first reference velocity at
a depth level under consideration. We will use the minimum
velocity at a depth level as the first reference velocity because
it is more accurate in doing so. Figure 5 shows the migrated
results. We can see that the results of PSPI (a) and extended-
split-step-Fourier (b) are basically the same in terms of the
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Figure 4 Reference velocities at a particular depth. The red dashed
lines indicate the reference velocities. (a) Geometric progression
method; (b) statistical method.

position and shape of reflectors and faults. This is in agree-
ment with the theoretical analysis that both methods have the
same kinematics properties. However the amplitudes calcu-
lated by these two methods are different. Figure 5(c) shows
the amplitude difference of these two methods. In Fig. 6,
we display the migration results by using the geometric pro-
gression method for selection of reference velocities. In this
computation, we use ρ = 1.2. In this case, we can draw the
same conclusion regarding the imaging results of PSPI and
extended-split-step-Fourier.

In order to examine the results in Figs 5 and 6 more closely,
seismic traces at two surface locations (x = 5 km and x =
6.25 km) are displayed in Fig. 7. From the traces, we can
see that the traces of the PSPI and extended-split-step-Fourier

methods indeed have the same phase that represents the kine-
matic characteristics of wave propagation, whereas their am-
plitudes differ from each other. For the influence of the choice
of reference velocities, we can see that the traces obtained by
the geometric progression method and the statistical method
exhibit both phase and amplitude discrepancies.

CONCLUSIONS

Unified separable formulas of the PSPI and extended-split-
step-Fourier methods are derived, which account for the three
components of these methods: time-shift term, phase-shift
with reference velocities and interpolation between wave-
fields. These formulas provide a concise and intrinsic under-
standing of these methods as a whole. Using these formulas,
we show that these two methods have the same kinematic
characteristics by means of the theory of pseudodifferential
operators. Numerical experiments on the Marmousi model
confirm the theoretical analysis. For the selection of refer-
ence velocities, we demonstrate that the geometric progression
method is simple but does not take into account the veloc-
ity distribution, whereas the statistical approach is relatively
complex but reflects the velocity distribution.
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(b) extended-split-step-Fourier; (c) difference between PSPI and extended-split-step-Fourier.

Figure 6 Migration results with PSPI and extended-split-step-Fourier by using the geometric progression method for selecting reference velocities.
(a) PSPI; (b) extended-split-step-Fourier; (c) difference between PSPI and extended-split-step-Fourier.
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Figure 7 Seismic traces at two surface locations (x = 5 km and x = 6.25 km). “1” represents the PSPI method, “2” represents the extended-
split-step-Fourier method, and “3” represents the difference between PSPI and extended-split-step-Fourier methods. (a) and (b) are obtained
with the statistical method and (c) and (d) are obtained with the geometric progression method.
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APPENDIX

Some basic facts on pseudodifferential operators

In this appendix, we recall some concepts and results regarding
pseudodifferential operators. For details, see Treves (1980)
and Maslov and Fedoriuk (1981).

Let L(x, p; λ) and u(x) be scalar functions, where x = (x1,
x2, . . . , xn), p= (p1, p2, . . . , pn), and λ is a parameter. With the
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use of Fourier transformation, we can define two operators:

L(
2
x,

1
Dx; λ)u(x) = F −1

p→x

[
L(x, p; λ)Fx→ pu(x)

]
, (A1)

L(
1
x,

2
Dx; λ)u(x) = F −1

p→x

[
Fx→ p (L(x, p; λ)u(x))

]
, (A2)

where Fx→ p and F−1
p→x are forward and inverse Fourier trans-

forms, respectively and indices 1 and 2 indicate the order of
the operators x and Dx when acting on a function, namely,
which acts first and which acts second. Here

Dx =
(

1
i

∂

∂x1
,

1
i

∂

∂x2
, . . . ,

1
i

∂

∂xn

)
, (A3)

where i is the imaginary unit.
The operators defined in (A1) and (A2) are called pseudod-

ifferential operators and L(x, p; λ) is their symbol.
For example, consider the wave equation in the frequency-

space domain:(
∂2

∂x2
1

+ ∂2

∂x2
2

+ ∂2

∂x2
3

+ ω2

v(x1, x2, x3)2

)
u = 0, (A4)

where u is the wavefield, ω is the circular frequency and v(x1,
x2, x3) is the velocity.

For the Helmholtz operator in the parentheses in equation
(A4), its symbol is

L(x, p; λ) = −(p2
1 + p2

2 + p2
3) + λ2

v(x1, x2, x3)2
, (A5)

where λ = ω.

Let S1(x) and S2(x) be two real-valued functions. If, for any
function ϕ(x) with compact support, the following equations
hold:

L(
2
x,

1
Dx; λ) [ϕ(x) exp(iλS1(x))] = O(λ−1), λ → +∞, (A6)

L(
1
x,

2
Dx; λ) [ϕ(x) exp(iλS2(x))] = O(λ−1), λ → +∞, (A7)

then we call S1(x) and S2(x) the characteristics associated

with L(
2
x,

1
Dx; λ) and L(

1
x,

2
Dx; λ), respectively. The charac-

teristic of a pseudodifferential operator satisfies the corre-
sponding Hamilton-Jacobi equation. In the case of the scalar
wave equation where λ = ω, the Hamilton-Jacobi equa-
tion becomes the eikonal equation and the characteristic be-
comes the traveltime function (Maslov and Fedoriuk 1981).
Specifically, the Hamiltonian-Jacobi equation for equation
(A4) is

(
∂T
∂x1

)2

+
(

∂T
∂x2

)2

+
(

∂T
∂x3

)2

= 1
v(x1, x2, x3)2

, (A8)

where T(x1, x2, x3) is the travel time. The equation (A8) is
just the eikonal equation.

An important result about the characteristics is that the
characteristics S1(x) and S2(x) defined in (A6) and (A7) coin-
cide, namely S1(x) = S2(x) (Proposition 3.6, in Maslov and
Fedoriuk 1981).
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