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Short Note

Two kinds of separable approximations for the one-way wave operator

Jing-Bo Chen1 and Hong Liu1

INTRODUCTION

Le Rousseau and de Hoop (2001) developed a general-
ized screen method that generalizes the phase-screen and
the split-step Fourier methods to increase their accuracies
with large and rapid lateral variations. Using two Taylor ap-
proximations and a perturbation hypothesis, this approach
approximates the one-way wave operator by products of func-
tions in space variables and functions in wavenumber vari-
ables. This approximation enables the inverse Fourier trans-
form with respect to wavenumbers to be independent of the
space variables, thus resulting in significant improvement of
the computational efficiency. In spite of its great success, this
method has low convergence, and it suffers from the presence
of branch points resulting from the choice of the background
medium.

Chen and Liu (2004), without background medium, deve-
loped a method for constructing optimal approximations with
separable variables for the one-way operator by developing
the ideas in Song (2001). This new method approximates
the one-way operator by products of functions in space vari-
ables and functions in wavenumber variables by means of
the optimal approximation with separable variables. The ap-
proach presented in Chen and Liu (2004) has high conver-
gence and does not suffer from the presence of branch points
but needs numerical computations to determine the approxi-
mation.

In this short note, we will summarize the essential features
of the above-mentioned methods and introduce the concept
of separable approximations for the one-way wave operator.
Two kinds of separable approximations based on the local and
global frameworks are compared.
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SEPARABLE APPROXIMATION FOR
THE ONE-WAY OPERATOR

First consider the one-way thin slab propagator:

g(z, x, y; z′, x ′, y ′)

� 1
4π2

∫
exp

[
i

√
ω2

c(z̄, x, y)2
− (

k2
x + k2

y

)
�z

]
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where kx, ky are wavenumbers and

z̄ = z′ + 1
2
�z.

For details, see le Rousseau and de Hoop (2001):
The one-way operator in equation 1 is written as

A(x, y; kx, ky) = exp
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The separable approximation for the one-way operator (2) has
the following form:

A(x, y; kx, ky) ∼
s∑

i=1

fi(x, y)gi(kx, ky). (3)

With the approximation (3), the propagator (1) becomes
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Using equation 1 to compute the propagator requires a 2D
inverse FFT (fast Fourier transform) for each space point in
each depth interval because the FFT depends on the space
variables. If we use equation 4, then the FFT no longer de-
pends on the space variables and leads to a significant sim-
plification of computational effort. The computational com-
plexity of equation 4 for each depth interval is proportional
to (s + 1)NxNylog2(NxNy), where s refers to s inverse FFTs,
1 means one forward FFT, and Nx and Ny are the number of
samples in x- and y-directions, respectively. The good perfor-
mance of the separable approximation has been demonstrated
on migration examples in le Rousseau and de Hoop (2001).
The construction of the separable approximation (3) can be
performed in two frameworks; one is local, the other global.

Local framework for constructing
separable approximations

The local framework for constructing separable approxi-
mations consists of using the local Taylor expansion of the
one-way operator (2) and assuming a reference velocity as a
background velocity. Some methods impose no restrictions on
the reference velocity, such as the split-step Fourier method
(Stoffa et al., 1990) and the phase-screen method (le Rousseau
and de Hoop, 2001). Some methods however, (e.g., the gener-
alized screen method) (le Rousseau and de Hoop, 2001) im-
pose conditions on the reference velocity, such as requiring
that the reference velocity be smaller than the minimum ve-
locity to avoid the branch points.

Let c0(z̄) denote the reference velocity in the depth interval
under consideration. The perturbation �c(x, y, z̄) is given by

�c(x, y, z̄) = 1
c2(x, y, z̄)

− 1
c2

0(z̄)
.

In the following, the corresponding s, fi , and gi are shown
in equation 3 for the above-mentioned separable approxima-
tions. The notation z̄ is omitted for simplicity. The split-step
Fourier method is:
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The phase-screen method is:
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The generalized-screen method (nth order) is:
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where j = 1, 2, . . . , n and

a1 = 1
2
, aj = (−1)j+1 1 · 3 · · · (2j − 3)

j ! 2j
, j ≥ 2.

In the local framework, separable approximations based on
the Chebyshev expansions are worthy of investigation (Halpern
and Trefethen, 1988).

Global framework for constructing
separable approximations

The global framework for constructing separable approxi-
mations consists of approximating the one-way operator (2)
in a global interval by means of optimization, and it was de-
veloped by Chen and Liu (2004). We give a brief introduction
to this method below.

We introduce variables u = ω/c(x, y, z̄) and k = √
k2

x + k2
y ,

and with these variables, the one-way operator (2) becomes

A(u, k) = exp
(
i
√

u2 − k2�z
)

. (5)

The optimal separable approximation for equation 5 is to find
functions φ(u), ψ(k), and a complex number λ such that

‖A(u, k) − λφ(u)ψ(k)∗‖L2 = min
φ̃,ψ̃,λ̃

‖A(u, k)

− λ̃φ̃(u)ψ̃(k)∗‖L2 , (6)

where ∗ denotes the complex conjugate, λ̃ ∈ C, and

φ̃ ∈ {
φ̃(u) : φ̃(u) ∈ L2[a, b], ‖φ̃(u)‖L2 = 1

}
,

ψ̃ ∈ {
ψ̃(k) : ψ̃(k) ∈ L2[c, d], ‖ψ̃(k)‖L2 = 1

}
.

Here, L2[a, b] stands for the space consisting of square inte-
grable functions defined on [a, b]. The norm ‖ · ‖L2 is defined
by

‖f (x)‖L2 =
(∫ b

a

|f (x)|2dx

)1/2

, ∀f (x) ∈ L2[a, b].

Using a Lagrange multiplier, it can be proved easily that the
solution to equation 6 is the eigenfunction corresponding to
the eigenvalue with maximum modulus of the following linear
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integral equation system:∫ d

c

A(u, k)ψ(k)dk = λφ(u),
(7)∫ b

a

A(u, k)∗φ(u)du = λ∗ψ(k).

In general, the analytical solution of system (7) is not avail-
able and can be solved only numerically. Consider partitions
of intervals [a, b] and [c, d] with nodes:

ui = a + (i − 1)�u, i = 1, 2, . . . , m + 1; �u = b − a

m
,

kj = c + (j − 1)�k, j = 1, 2, . . . , n+ 1; �k = d − c

n
.

Set φ = (φ1, φ2, . . . , φm)T and ψ = (ψ1, ψ2, . . . , ψn)T , where
φs = φ(us), s = 1, 2, . . . , m and ψq = ψ(kq), q = 1, 2, . . . , n.

Let A = (ai,j ) be a matrix with entries:

ai,j = A(ui, kj ), i = 1, 2, . . . , m; j = 1, 2, . . . , n.

By solving the system (7) numerically, we can conclude that φ

and ψ are the left and right singular vectors of A correspond-
ing to the maximum singular value λ1, respectively. For de-
tails, see Chen and Liu (2004). Let φ(1)(u) and ψ (1)(k) denote
the interpolation function of φ and ψ respectively.

Next, we obtain the optimal approximation with separable
variables for A(u, k) as:

A(u, k) � λ1φ
(1)(u)ψ (1)(k)∗.

To increase accuracy, set

A1(u, k) = A(u, k) − λ1φ
(1)(u)ψ (1)(k)∗.

We can obtain the optimal approximation with separable vari-
ables for A1(u, k) by using the same method as used for
A(u, k):

A1(u, k) � λ2φ
(2)(u)ψ (2)(k)∗.

Thus, we have the second-order approximation

A(u, k) � λ1φ
(1)(u)ψ (1)(k)∗ + λ2φ

(2)(u)ψ (2)(k)∗.

Repeating this process, we finally obtain

A(u, k) �
t∑

l=1

λlφ
(l)(u)ψ (l)(k)∗, (8)

where t ≤ r and r is the rank of A.
The corresponding s, fi , and gi in equation 3 for the separa-

ble approximation (8) are as follows:

s = t, fl(x, y) = λlφ
(l)(u),

gl(kx, ky) = ψ (l)(k)∗, l = 1, 2, . . . , t.

NUMERICAL OPERATOR COMPARISONS

We perform some numerical operator comparisons in this
section. For simplicity, consider here the 2D case [(x, z) sec-
tion]. In the following, we will use the sign GS(n-1) to stand
for the (n-1)th-order generalized-screen method and the sign
OSAn for the nth-order optimal separable approximation.

Notice that the letter n in these signs can be replaced by num-
bers. For example, OSA4 stands for the fourth-order optimal
separable approximation. Because GS(n-1) and OSAn have
the same computational complexity (n + 1)NxNylog2(NxNy),
we will make comparisons between them.

For the velocity and frequency, we take a typical ma-
rine processing model: f ∈ [0 hz, 40 hz] and v ∈ [1500 m/s,
4500 m/s]. The range of kx is from −2π/125 to 2π/125. Set
�z = 10 m. Further, we take

�u = 1
40

[
40π

1500
− 40π

4500

]
; �kx = 1

100

(
4π

125

)
.

In Figure 1, we take ω = 40π and show the error of GS(n-1)
and OSAn for n = 1, 2, 3, 4. The error is defined by

(Error(u))2 = 1
T

50∑
j=−50

∣∣∣∣∣A(u, j�kx)−
n∑

l=1

fl(u)hl(j�kx)

∣∣∣∣∣
2

,

(9)

where T = ∑50
j=−50 |A(u, j�kx)|2.

The error in equation 9 is defined as a function of veloc-
ity and is the error for an arbitrarily heterogeneous model
with a corresponding range of velocities. In numerical com-
parisons; however, it is customary to make comparisons for in-
dividual velocities. For example, see le Rousseau and de Hoop
(2001), and we will follow this convention. The calculated er-
rors reflect the difference between the calculated image and
the true image. Under the same conditions (such as the same
trace spacing, time sampling, and quality of recorded data), a
smaller error means more accurate imaging. We sum over the
wavenumber because in seismic migration the wavefield con-
tinuation usually is performed for individual frequencies.

For the generalized-screen method GS(n-1), we take the
reference velocity as c0 = 1400 m/s to avoid the branch point.
For other reference velocity that is smaller than 1500 m/s,
we can obtain similar results. For n = 1, the GS0 is merely
the split-step Fourier method. From Figure 1, we see that the
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Figure 1. Comparison of the errors of GS(n-1) and OSAn for
n = 1, 2, 3, 4. GS(n-1): solid line; OSAn: dashed-dotted line.
We take ω = 40π .
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Figure 2. Comparison of the errors of GS(n-1) and OSAn for
n = 1, 2, 3, 4. GS(n-1): solid line; OSAn: dashed-dotted line.
We take ω = 80π .
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Figure 3. The phase curves of GS3, OSA4 and the exact one-
way operator for different velocities are shown. Exact: green
line; GS3: red line; OSA4: blue line. We take ω = 40π .

error of GS(n-1) increases with increasing velocity. For large
velocities, the error becomes large, and this situation does not
significantly improve when the order n increases. The OSAn,
on the other hand, has small errors for the whole velocity in-
terval, and the error decreases rapidly when the order n in-
creases. For other frequencies, we can obtain similar observa-
tions. Figure 2 shows the results for the frequency ω = 80π .

In Figures 3 and 4, we compare the phase curves cpz of GS3,
OSA4 and the exact one-way operator for different velocities.
Here, pz is vertical slowness. The phase curve cpz is defined by

cpz =
√

1 −
(

ckx

ω

)2

=
√

1 − sin2 θ,
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Figure 4. The phase curves of GS3, OSA4 and the exact one-
way operator for different velocities are shown. Exact: green
line; GS3: red line; OSA4: blue line. We take ω = 80π .

where θ = sin−1(ckx/ω) is the propagation angle and the range
of cpz is normalized between 0 and 1. In the following figures,
we use degree as the unit of θ .

We first take ω = 40π . From Figure 3, we see that the phase
curves of OSA4 and the exact one-way operator are in agree-
ment for all velocities. Again, the error in the phase curves
of GS3 increases with increasing velocity. This is caused by
the choice of the reference velocity. For other frequencies, we
can draw the same conclusions. Figure 4 shows the results for
ω = 80π .

CONCLUSIONS

In this short note, we have explored the global approxi-
mation properties of the optimal separable approximations
and compared them with the local-based methods such as the
generalized-screen method. Based on this research, we intro-
duce the concept of separable approximations for the one-
way wave operator. Two kinds of separable approximations
based on the local and global frameworks are compared. We
perform numerical operator comparisons in which frequency
and velocity ranges are taken from a typical marine process-
ing model. The results show that for the same computational
complexity (similar CPU time), the global method is accurate
for all the velocities, whereas the error in the local method
(generalized-screen method) increases with increasing veloc-
ity. Both methods can be applied in arbitrarily complex me-
dia; i.e., there is no restriction whatsoever to somehow well-
behaved models, such as weak contrasts, smooth, moderately
dipping, etc. However, the OSA method, different from the
GS method, does not rely on a background medium and has
much faster convergence.
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