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Modeling the scalar wave equation with Nystrom methods

Jing-Bo Chen'

ABSTRACT

High-accuracy numerical schemes for modeling of the
scalar wave equation based on Nystrom methods are devel-
oped in this paper. Space is discretized by using the pseu-
dospectral algorithm. For the time discretization, Nystrom
methods are used. A fourth-order symplectic Nystrom meth-
od with pseudospectral spatial discretization is presented.
This scheme is compared with a commonly used second-
order scheme and a fourth-order nonsymplectic Nystrom
method. For a typical time-step size, the second-order
scheme exhibits spatial dispersion errors for long-time simu-
lations, while both fourth-order schemes do not suffer from
these errors. Numerical comparisons show that the fourth-or-
der symplectic algorithm is more accurate than the fourth-or-
der nonsymplectic one. The capability of the symplectic
Nystrom method in approximately preserving the discrete
energy for long-time simulations is also demonstrated.

INTRODUCTION

Seismic modeling is an important foundation of exploration seis-
mology. High-accuracy seismic modeling schemes are increasing in
demand as computing capacity increases. In this context, high-accu-
racy schemes are developed using Nystrom time-stepping methods
and pseudospectral spatial discretizations.

Numerical schemes for modeling of the scalar wave equation in-
volve discretizations of both space and time. This discretizing pro-
cess can be accomplished in two ways. The first way is to discretize
both space and time simultaneously. The finite-difference methods
(Claerbout, 1985) belong to this category. The second way is first to
discretize space to obtain a system of ordinary differential equations
(ODEs) with time as a variable and then to construct numerical
schemes by discretizing time for the system of ODEs. The pseu-
dospectral methods (Gazdag, 1981) and the finite-element methods
(Ciarlet and Lions, 1991) fall into this second category.

To form a unified viewpoint and facilitate our understanding of
numerical simulation schemes, we will accept that all numerical
modeling schemes can be obtained by the second approach to dis-
cretization. Therefore, to construct modeling schemes for the scalar
wave equation, we can first discretize space by finite-difference
methods, pseudospectral methods, or finite-element methods. Sec-
ond, we numerically integrate the resulting system of ordinary dif-
ferential equations by discretizing time.

Note that the obtained system of ODE:s is of second order. When
numerically solving this system directly, we need to approximately
evaluate additional starting values in addition to initial values. The
higher the order of the schemes, the more complex the evaluation of
the additional starting values.

Nystrom methods are numerical methods designed for second-
order differential equations. Nystrom (1925) first considered this as
a simplification of Runge-Kutta methods. Hairer et al. (1993) sys-
tematically developed Nystrom methods. There are two benefits in
using Nystrom methods. First, we do not need to evaluate the addi-
tional starting values. Second, by introducing an intermediate vari-
able, the scalar wave equation can be cast into a Hamiltonian system.
Using Nystrom methods, we can develop the corresponding sym-
plectic methods. The symplectic methods have remarkable capabili-
ty for long-time computations. This is because the symplectic prop-
erties guarantee that the numerical solution evolves in the same sys-
tem as the solution of the original continuous differential equation
(Feng, 1993; Sanz-Serna and Calvo, 1994).

In this paper, I present the pseudospectral method and explore
high-order time discretizations. I follow this with a discussion of
Nystrom methods. I then develop a fourth-order symplectic Ny-
strom method with pseudospectral spatial discretization. Finally, I
illustrate the performance of this scheme with numerical experi-
ments that compare it with a second-order scheme and a fourth-order
nonsymplectic Nystrom method.

PSEUDOSPECTRAL METHODS

As mentioned above, we can use finite-difference methods, pseu-
dospectral methods, or finite-element methods for the space discreti-
zation. I use pseudospectral methods, for which the errors result
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mainly from the time discretization. For higher accuracy, we need
higher-order time discretization. The issue of computing additional
starting values becomes more evident in this situation.
Pseudospectral methods for modeling of the scalar wave equation
were presented by Gazdag (1981). The main point of the pseu-
dospectral methods is to express the wavefield under consideration
in terms of a complete set of orthogonal basis functions whose deriv-
atives are known exactly. In practice, Fourier pseudospectral meth-
ods are usually employed.
Consider the scalar wave equation

J*u 5 u  Pu 9u

=l +r 3+ (1)

ot ox dy oz
where u(x,y,z,t) is the wavefield and c(x,y,z) is the velocity. Let u
={uig, ... uNY_Nv_N_]T, where T represents transpose and u; ;; are the
wavefield values at discrete locations, i.e., u;; = u(ilx,jAy,
Az,t);i=1,..,N;j=1,..,Ny;[l=1,..., N. The values Ax,
Ay, and Az are grid increments in the x-, y-, and z-directions; and N,,
N,, and N, are the number of grid lines in the x-, y-, and z-directions,
respectively. The semi-discrete system resulting from the pseu-
dospectral method for equation 1 is

2
‘;—: = 2F [w * Flu)], (2)

where F and F ! represent 3D forward and inverse finite Fourier
transforms, respectively, and w = [w, 4, ..., ri,N‘,Nh]T withw,;, =
—(kfi + k2 + k?l), where k,, k),j, and k. are discrete wavenumbers
in the x-, y-, and z-directions, respectively. The asterisk * denotes
array multiplication between vectors. For example, suppose
that p = (pp2 .., pw) and q =(q1,92 ..., gu), then pq
= (P191:P2G2: -+ -+ PuGn)-

To obtain the final modeling scheme, we further discretize equa-
tion 2 in time. A standard second-order time difference is often used
and gives

u(ry + 2A1) = 2u(zy + Ar) — u(zy)
+ F [w = Flu(ty + An)]AP,  (3)

where At is the time-step size and #, is the initial time. As usual, we
take 7, = 0. To compute u(2Az) using equation 3, we need to know
u(0) and u(Ar), which can be computed from the initial conditions
of equation 1: u(0) and du(0)/dt. We can evaluate u(0) directly from
u(0). To obtain u(Ar), a third-order scheme based on a Taylor series
expansion was given by Gazdag (1981) as

3 . .
du(0) (Ar)'
u(d) =3 @)
i—o Ot i!
In equation 4, u(0) and du(0)/dt are known, u(0)/d¢* is defined
by equation 1, and #u(0)/d is obtained by

IR A A A TE
a =€ ax2+ay2+az2 o)’

which is obtained by substituting du/dt for u in equation 1. Finally,
we can compute u(Az) directly from u(Az).

The main error in scheme (equation) 3 is associated with the time
differencing. Thus, to improve accuracy, we need to use a higher-

order time difference. A natural choice is the fourth-order time dif-
ference

u(4Ar) = 16u(3Ar) — 30u(2Ar) + 16u(Ar) — u(0)
— 12¢2F[w = Fu(2A10) A2, (35)

However, we can show that scheme 5 is unconditionally unstable by
using the standard spectral analysis. Using the Taylor series and the
wave equation, another approach for high-order time differencing
was presented by Etgen (1986). But this approach still requires the
computation of additional starting values. For example, for a fourth-
order method, we need a fifth-order scheme to compute the starting
values instead of the third-order scheme 4. We are faced with a cum-
bersome procedure for computing starting values. Therefore, an al-
ternative approach is needed.

NYSTROM METHODS

The basic idea of Nystrom (1925) methods is as follows: First in-
troduce an intermediate variable to reduce the second-order wave
equation to an equivalent first-order system; then apply Runge-Kut-
ta methods to the first-order system and simplify by taking advan-
tage of the special form of the first-order system. The obtained
Nystrom methods do not need to evaluate starting values and have
considerably less computational cost than Runge-Kutta methods ap-
plied directly to the first-order system for second-order equations
such as equation 2. For details, refer to Hairer et al. (1993).

For our purposes, consider a second-order system of ordinary dif-
ferential equations written in the form

— =1y). (6)

ANystrom method for system 6 reads

Zi=f<y0+CiAtZO+At2zaiij>, i = 1, 2, ey S,
j=1

yl = yO + AIZ() + AtZE EiZi’
i=1

s
z, =2y + At biZ;, (7)
i=1
where z = dy/dt, y, = y(0), z, = 2(0),y, = y(At1), z, = z(Ar) and
where ¢;, a;, b;, and b, are constants that determine the order of the
method. The numerical solution y, is obtained through auxiliary
variables Z;in scheme 7.

The starting values y, and z, = dy(0)/dt in scheme 7 are both
known, and no additional starting values are needed. Scheme 7 re-
quires computation of z;, but this is easy to accomplish because the
main evaluations of Z; have been done previously in the computa-
tionofy,.

The order conditions (via the algebraic equations satisfied by c;,
a;, b;, and b;) have been obtained by using tree theory in Hairer et al.
(1993). By solving these algebraic equations, we can obtain the cor-
responding methods. Consider a stable fourth-order explicit method
(Qinand Zhu, 1991):
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With these coefficients, scheme 7 becomes

3+ V/g
Z] =f Yo + AIZ() s
6
3-43 2 -3
Z2=f<y0+ gy + At2Z1>,
3443 3
Z3 = f(yo + A AIZO + \?AZ‘ZZ2>,
+ At +At2<5_3\EZ + 3413
= z
Y1 =Yo 0 24 1 12 2
1+ \E )
+ Zs,
24
+ At<3 - Z\EZ NEVRE A 2\EZ ) 8)
Z, =1 e - —_—
1 0 12 1 2 2 12 3

Another benefit of Nystrom methods is that we can develop sym-
plectic algorithms if equation 6 possesses a symplectic structure. In
the past, we only focused on the accuracy of the numerical methods
when solving differential equations numerically. However, with the
tremendous progress in computer technology and numerical analy-
sis theory in recent decades, computation has become a third catego-
ry of methods in scientific research in addition to theory and experi-
ment. Not only is the accuracy of numerical methods expected, but
structure-preserving properties also are required. Solutions to differ-
ential equations usually preserve various structures such as sym-
plectic structure, multisymplectic structure, and various geometric
structures. When solving differential equations numerically, some
numerical methods also preserve these structures (they are usually
called structure-preserving algorithms), while others violate them.
The structure-preserving methods have remarkable capability for
long-time computation. The scalar wave equation 1 has a classical
Hamiltonian structure (Chen, 2004). Therefore, we can develop the
corresponding structure-preserving methods (see Appendix A).

A PSEUDOSPECTRAL METHOD WITH
FOURTH-ORDER NYSTROM TIME DIFFERENCE

Now we return to the issue of higher-order time difference for
equation 2. Equation 2 is a second-order system of ordinary differen-
tial equations obtained from equation 1 by using pseudospectral

methods. Therefore, Nystrom methods can be applied directly. We
introduce a variable v = du/dt and apply Nystrom method 8 to equa-

tion 2 to obtain
3443
Atvy | |,
6
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Scheme 9 is a stable fourth-order explicit Nystrom method with
accuracy of O(Ar*) (Qin and Zhu, 1991; Hairer et al., 1993). Be-
cause we use pseudospectral spatial discretization, the spatial accu-
racy is of exponential order O(exp(Ax)) (Fornberg, 1996). There-
fore, the total accuracy of scheme 9 is O(A#* + exp(Ax)). As pointed
out by Hairer et al. (1993), the Nystrom method (scheme 9) is con-
siderably more efficient than Runge-Kutta methods.

In seismic modeling based on scheme 9, we compute u; and v,
from known u, and v, = du,/dt. Then we repeat this process with u,
and v, replaced by u; and v,, respectively. Higher-order Nystrom
time differences are easily available, and they have the same format
as scheme 9 but with more V.

NUMERICAL EXPERIMENTS

In this section, we perform numerical experiments to test the fea-
sibility and performance of the presented scheme. For clarity and
simplicity, we only consider the 2D case. As in Gazdag (1981), we
use the initial conditions

u(x,z,t = 0) = exp[— 0.0001(x* + (z — z0)*)]
and

ou(0)
ot

The grid increments are Ax = Az = 50 m. Here, z is a constant that
indicates the position of the source. In the following numerical ex-
amples, we use periodic boundary conditions.

In the first example, we use scheme 9 to simulate wave propaga-
tion in a heterogeneous medium. The velocity model (Figure 1) con-
sists of three layers with velocities ¢ = 1000 m/s, 2000 m/s, and
3000 m/s; a straight interface; and a curved interface. The source is
setat (x = 0 m, z = 200 m). The time-step size Azis 0.006 s. Figure
2 shows the wavefield at r = 0, 0.438, 0.936, 1.248, 1.56, and
1.872 s. The simulated reflection and transmission phenomena are
qualitatively correct.
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‘We now make numerical comparisons between scheme 9 and the
commonly used scheme 3. In this example, we use the velocity ¢
= 3000 m/s and the time step size At = 0.006 s. The starting value
for equation 3 is computed through equation 4, which requires eval-
uating the second-order spatial derivatives of the initial conditions.
Therefore, when using schemes like equation 3 in wave simulation,
we usually require that the initial conditions have a certain degree of
smoothness, which sometimes is not satisfied in practice (for exam-
ple, discrete initial conditions). In contrast, when using scheme 9, we
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Figure 1. The velocity model used for the numerical experiments. It
consists of three layers with velocities ¢ = 1000 m/s, 2000 m/s, and
3000 m/s, respectively; a straight interface; and a curved interface.
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Figure 2. Wavefield evolution with time computed with scheme 9.
Distance and time are measured in meters and seconds, respectively.
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have no special requirement on the initial conditions, which makes
schemes like 9 more practical. In Figure 3, we show the impulse re-
sponses for schemes 3 and 9 after 200, 500, and 5000 time steps, re-
spectively. For time steps equal to or less than 200, impulse respons-
es for both schemes 3 and 9 do not exhibit spatial dispersion errors.
After 500 time steps, the spatial dispersion becomes evident in the
wavefront computed with scheme 3, which contrasts with the clean
wavefront computed with scheme 9 (Figure 3¢ and d). After 5000
time steps (z = 30 s), the wavefront computed with scheme 3 has
blurred very badly, but the wavefront computed with scheme 9 is still
sharp (Figure 3e and f). These observations indicate that for a typical
time-step size of 0.006 s, the commonly used scheme 3 is not suit-
able for lengthy simulations.

Now we perform simulations by scheme 3 with smaller time-step
sizes of 0.004, 0.003, 0.002, and 0.001 s. To compute the wavefront
at 30 s, the number of time steps is 7500, 10,000, 15,000, and
30,000, respectively. Figure 4 shows the simulation results. We see
that dispersion errors decrease as time-step size decreases. The re-
sult with time-step size of 0.001 s is similar to that obtained with
scheme 9 with a time-step size of 0.006 s (Figure 3d). This indicates
that to obtain the impulse response at 30 s, scheme 9 with a time-step
size of 0.006 s is more efficient than scheme 3 with a time-step size
of 0.001 s.

We can explain this as follows: Although for each time step
scheme 9 needs to compute three pairs of FFTs (forward and in-
verse), which is three times as many as that of the scheme 3, the time-
step size used in scheme 9 is six times as large as that used in scheme
3. Because the main computational cost in both schemes 9 and 3 is
the computation of FFTs, the overall computational cost of scheme 9
is only half that of scheme 3.

To demonstrate the advantages of the symplectic method, we now
make numerical comparisons between the fourth-order symplectic
Nystrom scheme 9 with the following fourth-order nonsymplectic
Nystrom scheme:

V, = AF[w x Flup)],
1 1
V2 = C2.7:_1|:W * f(uo + EAtVO + gAt2V1>i| .
1
V, = czf_l[w * f(uo + Atvy + EARVZ)},

1 1
u =uy+ AIVO + A[Z(EVI + §V2>,

1 2 1
Vl VO + At(—Vl + sz + _V3) . (10)

6 6

Figure 5 shows the impulse response computed with scheme 10
after 5000 time steps. The time-step size is 0.006 s. We see that the
result is similar to that computed with the symplectic scheme 9 (Fig-
ure 3f). To examine more closely the results obtained by these two
fourth-order schemes, amplitude curves at a fixed point (x =
—1600 m, z = 1600 m) over the time near 30 s (5000 time steps) are
shown in Figure 6a. We see discrepancy in the amplitude curves
computed by the two fourth-order schemes. In Figure 6b, another
amplitude curve is added, which is computed by the nonsymplectic
scheme 10 with a smaller time step size of 0.001 s. It can be seen that
the amplitude curve computed by the symplectic scheme 9 with a
time-step size of 0.006 s agrees well with the amplitude curve com-
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puted by the nonsymplectic scheme 10 with a smaller time-step size
0f 0.001 s. This indicates that the fourth-order symplectic algorithm
scheme 9 is more accurate than the fourth-order nonsymplectic algo-
rithm scheme 10 for the same time-step size. To show how the ampli-
tude curves computed by the nonsymplectic scheme 10 with smaller
time-step sizes approach the amplitude curve computed by the sym-
plectic scheme 9 with a time-step size of 0.006 s, we plot the follow-
ing amplitude-difference curves (Figure 6¢):

AD (1) = Sg.006(t) = NSaL2),

where AD,() denotes the amplitude-difference curve; S (), the
amplitude curve computed by the symplectic scheme 9 with a time-
step size of 0.006 s; and NS,,(#), the amplitude curve computed by
the nonsymplectic scheme 10 with a time-step size of Az. Here we
take Az = 0.006,0.004,0.002, and 0.001 s. We can see that the mag-
nitude of the curves of the amplitude difference diminishes with de-
creasing Ar.

From the above numerical comparisons, we can conclude that to
achieve approximately the same accuracy, the symplectic algorithm
scheme 9 is much more efficient than the nonsymplectic algorithm
scheme 10, considering the time-step sizes used. This is a great ad-
vantage.

a Distance (m)
—03000 -2000-1000 0 1000 2000 3000

Distance (m)
—03000 -2000-1000 O 1000 2000 3000

1000

Q
=]
=]

2000

IN)
Q
=]
=]

€ E
£ 3000 £ 3000
j°% o
3 a
4000 4000

5000

6000

Distance (m)
—03000 -2000-1000 0 1000 2000 3000
= -

Distance (m)
—03000 -2000-1000 O 1000 2000 3000

1000

2000

3000

Depth (m)
Depth (m)

4000
5000

6000

Distance (m)

—03000 -2000-1000 O 1000 2000 3000
= e = .

e

N =
Q Q
=} =}
S S

Depth (m)
Depth (m)

4000

Figure 3. Impulse responses computed with schemes 3 and 9. (a) and
(b) 200 time steps; (c) and (d) 500 time steps; (e) and (f) 5000 time
steps. Views (a), (c), and (e) are computed with scheme 3; (b), (d),
and (f) are computed with scheme 9.

Another important advantage of a symplectic algorithm is its abil-
ity to approximately preserve energy for lengthy simulations (Feng,
1993; Sanz-Serna and Calvo, 1994). For the wave equation u,
= ¢*(u,, + u..) with a periodic boundary condition, the true solution
preserves the energy

J v + cz(uf + uf))dxdz,
M

wherev = i, and M is the integral domain.
Now in our numerical experiments, we monitor the discrete
energy
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Figure 4. Impulse response at 30 s. The results are computed with

scheme 3 with time-step sizes of 0.004, 0.003, 0.002, and 0.001 s,
respectively.
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scheme 10 with a step-time size of 0.006 s.
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Figure 6. Amplitude and amplitude-difference curves at a fixed point
(x = =1600 m, z = 1600 m) over the time near 30 s. (a) Amplitude
curves computed by the symplectic scheme 9 with At = 0.006 s
(blue line) and the nonsymplectic scheme 10 with A¢ = 0.006 s (red
line). (b) Amplitude curves computed by the symplectic scheme 9
with A7 = 0.006 s (blue line); the nonsymplectic scheme 10 with
Ar = 0.006 s (red line); and the nonsymplectic scheme 10 with
Ar=0.001 s (green line). (c) Amplitude-difference curves: Ar
= 0.006 s (red line); At = 0.004 s (blue line); Az = 0.002 s (yellow
line); and A7 = 0.001 s (green line).

where v} = v(iAx,IAz,nAr), u?; = u(iAx,IAz,nAr), and n =
0,1,2, ..., N.Here, Nis the number of time steps.

Figure 7a shows the discrete energy curves [G(n) as a function ]
for both schemes 9 and 10, with N = 5000. For the symplectic
scheme 9, the energy curve fluctuates about a constant energy. For
the nonsymplectic scheme 10, a numerical loss in energy is ob-
served. The corresponding result for N = 100,000 is shown in Figure
7b. For this very long computation, the energy curve for the sym-
plectic scheme 9 still fluctuates about a constant energy while nearly
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Figure 7. Discrete energy curves [G(n) versus n] for the symplectic
scheme 9 and the nonsymplectic scheme 10. (a) N = 5000; (b) N
= 100,000.

half of the energy is lost in the energy curve for the nonsymplectic
scheme 10. This demonstrates the capability of the symplectic algo-
rithm for approximately preserving the discrete energy for lengthy
computations.

CONCLUSIONS

Nystrom time differencing with pseudospectral spatial discreti-
zaiton is presented for modeling of the scalar wave equation. Two
fourth-order Nystrom schemes with pseudospectral spatial discreti-
zaiton are developed; one is symplectic and the other is nonsymplec-
tic. Numerical experiments demonstrate three results. First, these
fourth-order schemes can be used for long-time simulations with a
time-step size of 0.006 s, whereas the commonly used second-order
scheme exhibits severe dispersion errors for this computation time
and time-step size. Second, the fourth-order schemes with a time-
step size of 0.006 s are more efficient than the second-order scheme
with a small time-step size of 0.001 s. And third, the symplectic al-
gorithm is more accurate than the nonsymplectic algorithm and has a
better capability of approximately preserving the discrete energy for
lengthy simulations.

Preserving propagation energy is only one feature of preserving
symplectic structure. The symplectic algorithms also have other fea-
tures such as better accuracy, which can be explained by the theory
of backward error analysis (Hairer et al., 2002). According to this
theory, the solutions of both symplectic and nonsymplectic algo-
rithms for a Hamiltonian system formally satisfy a perturbed system.
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However, the perturbed system satisfied by the symplectic algo-
rithms retains the Hamiltonian structure; the system satisfied by the
nonsymplectic algorithms does not.
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APPENDIX A

HAMILTONIAN STRUCTURE

In this appendix, I present the Hamiltonian structure and the cor-
responding symplectic algorithms for the scalar wave equation. In-
troducing an intermediate variable v = du/dt, equation 1 is equiva-
lent to

u
— =,
ot
ov 2 Pu  Fu  Fu
—=cl—Z+ 3+ (A-1)
ot ox dy oz
Equation A-1 can be reformulated as
SH
dlu 0 1 ou
- |= : (A-2)
dtlv -1 0]| 6K
ov

where

s el 3 2 o

is the Hamiltonian system, and ddenotes the variational derivative.

Equation A-2 is an infinite-dimensional Hamiltonian system. The
evolution of the wavefield with time is characterized by a symplectic
structure [du A dvdxdy, which can be viewed as an antisymmetric
quadratic form. For the exact definition of symplectic structure, as
well as the infinite-dimensional Hamiltonian system and variational
derivative, see Olver (1993).

In solving equation A-2 numerically, we can use finite-difference,
finite-element, or pseudospectral methods to discretize the space and
obtain a finite-dimensional system. Equation 2, which is obtained
with a pseudospectral method, can be cast into a finite-dimensional
Hamiltonian system. First, introducing v = du/dt, we can rewrite
equation A-2 as

du

du_

dt

d

d—: = 2F [w = Fu)]. (A-3)

Further, we can reformulate equation A-3 as

oH

d[u] [0 1] ou
- = ) (A_4)
dt| v -1 0 ii

av

where I is an identity matrix and H = %[vTv + c2u”Du]. The matrix
D is a second-order spectral differential matrix which satisfies

F~[w % F(u)] = Du.

For details about spectral differential matrix, see Chen and Qin
(2001). Equation A-4 is a standard finite-dimensional Hamiltonian
system. A finite-dimensional Hamiltonian system is just a system of
ordinary differential equations that has the form of equation A-4.
The true solution of equation A-4 preserves the symplectic structure
du A dv. In other words, if we suppose that the solution of equation
A-4is P = F(P,), where P = [u,v]"and P, = [u(¢ = 0),v(t = 0)]",
then the fact that F(P,) preserves the symplectic structure du A dv
is equivalent to F( P,) satisfying

oF | | oF |T 0 1
— \J| ——| =J, whereJ= .
dP, P, -10

Here, [ 0F/9P,] is the Jacobian of the vector-valued function F(Py).
A function satisfying the above equality is also called a symplectic
mapping. Thus, itis concluded that the time evolution of the seismic
wavefield is a symplectic mapping. In seismic modeling, we need to
solve equation A-4 numerically. Suppose that F(Py) is the numerical
solution of equation A-4 obtained by some numerical algorithm. Of
course, the numerical solution F° (Py) is the approximation of the true
solution F(P,). Does the numerical solution also have other proper-
ties? In fact, some numerical solutions are symplectic mappings
while others are not. A numerical method is called a symplectic algo-
rithm if the resulting numerical solution is a symplectic mapping. In
the past, we mainly focused on the accuracy of the numerical solu-
tion to a Hamiltonian system; its structure-preserving properties
were not considered seriously. With the introduction of symplectic
algorithms and its great success in many physical fields, structure-
preserving algorithms have developed into a very active and promis-
ing research area. The Hamiltonian framework developed here pro-
vides a basis for applying symplectic algorithms in seismic model-
ing. Based on this framework, we should develop numerical solu-
tions of equation A-4 that are also symplectic mappings, i.e.,
symplectic algorithms. Various symplectic algorithms for Hamil-
tonian systems have been developed. We can directly apply the sym-
plectic algorithms to equation A-4. Based on a finite-difference spa-
tial discretization, Hamiltonian systems also can be obtained (Luo
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et al., 2001). However, this kind of spatial discretization usually

causes spatial dispersion errors.
Now consider a Nystrom formulation for equation A-4:

K
V[ = C2.7:_1 wx F uy + CiAtZO + AtZE a,jVj ,
J=1

u, + AtVO + AtZE l;iVi’ Vi =Vy+ AtE biVi'

i=1 i=1

u;
(A-5)

If the coefficients in scheme A-5 satisfy

l;i:bi(l—ci), i=1,...,s,

bi(l;j - a;) = bj(l;i - aj),

then scheme A-5 is a symplectic algorithm (Sanz-Serna and Calvo,
1994). 1t is easy to check that the coefficients used in scheme 9 satis-
fy the above conditions; therefore, scheme 9 is a symplectic algo-
rithm.
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