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ABSTRACT

Based on the formula for stability of finite-difference

methods with second-order in time and general-order in

space for the scalar wave equation, I obtain a stability for-

mula for Lax-Wendroff methods with fourth-order in time

and general-order in space. Unlike the formula for methods

with second-order in time, this formula depends on two

parameters: one parameter is related to the weights for

approximations of second spatial derivatives; the other

parameter is related to the weights for approximations of

fourth spatial derivatives. When discretizing the mixed

derivatives properly, the formula can be generalized to the

case where the spacings in different directions are differ-

ent. This formula can be useful in high-accuracy seismic

modeling using the scalar wave equation on rectangular

grids, which involves both high-order spatial discretiza-

tions and high-order temporal approximations. I also prove

the instability of methods obtained by applying high-order

finite-difference approximations directly to the second tem-

poral derivative, and this result solves the “Bording’s

conjecture.”

INTRODUCTION

Finite-difference methods are a useful tool for seismic model-

ing, imaging, and inversion. A condition for applicability of

these methods is that they must be stable. Therefore, a formula

for stability of finite-difference methods would be very helpful.

Based on the well-known von Neumann method for analyzing

stability, Lines et al. (1999) obtained a stability formula of

finite-difference methods with second-order in time and general-

order in space for the scalar wave equation. The resulting for-

mula depends only on one parameter, which is the sum of abso-

lute values of weights of the finite-difference approximations for

second spatial derivatives.

To achieve a balance between the accuracy of spatial discreti-

zations and that of temporal discretizations, it is desirable to de-

velop high-order temporal approximations. To this aim, a natural

approach is to apply directly high-order finite-difference discreti-

zations to the second temporal derivative. However, this approach

does not work because the resulting finite-difference methods are

unstable (see Appendix A). The “Bording’s conjecture” was

raised in Lines et al. (1999), which is a stability formula for finite-

difference methods with general-order in time and general-order

in space. Because applying high-order finite-difference approxi-

mations to the second temporal derivative directly leads to insta-

bility, the “Bording’s conjecture” holds only for second-order

finite-difference approximation of the second temporal derivative.

To obtain high-order temporal approximations, one still uses sec-

ond-order finite-difference approximation of the second temporal

derivative, but at the same time needs to replace the high-order

temporal derivatives (the errors caused by the second-order finite-

difference approximation of the second temporal derivative) by

spatial derivatives via the wave equation. This method is called

the Lax-Wendroff method (Dablain, 1986; Carcione et al., 2002;

Chen, 2007, 2009).

In this paper, I will generalize the stability formula obtained

in Lines et al. (1999) for the scalar wave equation and derive

a formula for stability of Lax-Wendroff methods with fourth-

order in time and general-order in space. This is followed by

(1) a description of the relationship between new and old for-

mulas, (2) the generalization to the case where spacings in

different directions are different, and (3) the approximation

of the mixed fourth spatial derivatives. Finally, based on

this new formula, some stability limits are tabulated and

compared.
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STABILITY FORMULA FOR LAX-WENDROFF

METHODS WITH FOURTH-ORDER IN TIME

The 3D acoustic wave equation is

o2p

ox2
þ o2p

oy2
þ o2p

oz2
¼ 1

v2

o2p

ot2
; (1)

where p x; y; z; tð Þ is the pressure wavefield and v x; y; zð Þ is the

velocity. First, I consider a finite-difference method with sec-

ond-order in time and general-order in space:

pnþ1
i;j;k � 2pn

i;j;k þ pn�1
i;j;k

Dt2

¼
v2

i;j;k

h2

XL

‘¼�L

w1
‘p

n
iþ‘;j;k þ w2

‘p
n
i;jþ‘;k þ w3

‘p
n
i;j;kþ‘

� �
; (2)

where pn
i;j;k � p iDx; jDy; kDz; nDtð Þ, vi;j;k ¼ v iDx; jDy; kDzð Þ, Dx,

Dy, and Dz are spacings in the x, y, and z directions, respectively,

w1
‘ , w2

‘ , and w3
‘ are the weights for the second spatial derivatives

in the x, y, and z directions, respectively, and Dt is time step. The

order of spatial accuracy is determined by the weights w1
‘ , w2

‘ ,

and w3
‘ . For simplicity, suppose that Dx ¼ Dy ¼ Dz ¼ h.

The stability limit of equation 2 can be obtained by using von

Neumann method (Wu et al., 1996). Lines et al. (1999) derived

the following stability formula:

r � vDt

h
� 2ffiffiffi

a
p ; (3)

where r denotes the Courant number, v is the maximum of vi;j;k,

and a ¼
PL

‘¼�L w1
‘

�� ��þ w2
‘

�� ��þ w3
‘

�� ��� �
, which represents the sum

of absolute values of weights for finite-difference approximation

of the second spatial derivatives.

Next, I discuss high-order temporal discretizations by Lax-

Wendroff methods. Based on Taylor expansions, Lax-Wendroff

methods use spatial derivatives to replace temporal derivatives

of high order (Dablain, 1986; Carcione et al., 2002; Chen, 2007,

2009). Then, time discretization of the scalar wave equation 1 yields

pnþ1 � 2pn þ pn�1

Dt2
¼ v2 o2pn

ox2
þ o2pn

oy2
þ o2pn

oz2

� 	

þ 2
XJ

j¼2

Dtð Þ2j�2

2jð Þ!
o2jpn

ot2j
; (4)

where pn � p x; y; z; nDtð Þ and Dt is the time step. The temporal

derivatives in equation 4 are obtained from the following recur-

sion, based on the wave equation 1:

o2pn

ot2
¼ v2 o2pn

ox2
þ o2pn

oy2
þ o2pn

oz2

� 	
;

o2jpn

ot2j
¼ v2 o2

ox2
þ o2

oy2
þ o2

oz2

� 	
o2j�2pn

ot2j�2
; j ¼ 2; 3;…; J:

The accuracy of equation 4 is O Dt2Jð Þ. Taking J ¼ 2, one

obtains a finite-difference method with fourth-order in time:

pnþ1 � 2pn þ pn�1

Dt2
¼ v2 o2pn

ox2
þ o2pn

oy2
þ o2pn

oz2

� 	

þ v2Dt2

12

o2

ox2
þ o2

oy2
þ o2

oz2

� 	

� v2 o2pn

ox2
þ o2pn

oy2
þ o2pn

oz2

� 	� 	
: (5)

When v varies spatially, the discretization of the second term on

the right side of equation 5 becomes very complicated. To sim-

plify discretizations, Dablain (1986) proposed and demonstrated

the following approximation:

pnþ1 � 2pn þ pn�1

Dt2
¼ v2 o2pn

ox2
þ o2pn

oy2
þ o2pn

oz2

� 	

þ v4Dt2

12

o4pn

ox4
þ o4pn

oy4
þ o4pn

oz4

�

þ 2
o4pn

ox2oy2
þ 2

o4pn

ox2oz2
þ 2

o4pn

oy2oz2

	
:

(6)

Further discretizing space in equation 6, one obtains

pnþ1
i;j;k � 2pn

i;j;k þ pn�1
i;j;k

Dt2

¼
v2

i;j;k

h2

XL

‘¼�L

w1
‘p

n
iþ‘;j;k þ w2

‘p
n
i;jþ‘;k þ w3

‘p
n
i;j;kþ‘

� �

þ
v4

i;j;kDt2

12h4

XM

m¼�M

w4
mpn

iþm;j;k þ w5
mpn

i;jþm;k þ w6
mpn

i;j;kþm

� �

þ
v4

i;j;kDt2

12h4

XL1

‘¼�L1

XM1

m¼�M1

2 w7
‘mpn

iþ‘;jþm;k þ w8
‘mpn

iþ‘;j;kþm

�

þw9
‘mpn

i;jþ‘;kþm

�
; (7)

where w1
‘ , w2

‘ , and w3
‘ are the weights for approximations of the

second spatial derivatives in the x, y, and z directions, respectively;

w4
m, w5

m, and w6
m are the weights for approximations of the fourth

spatial derivatives in the x, y, and z directions, respectively; and

w7
‘m, w8

‘m, and w9
‘m are the weights for approximations of the mixed

fourth spatial derivatives, respectively.

Equation 7 is a finite-difference method with fourth-order in

time and general-order in space. The order of spatial accuracy is

determined by the weights. Later in this paper, I will give some

concrete examples of equation 7.

The stability formula for equation 7 can be derived as

follows. Replacing vi;j;k by v, substituting the expression pn
i;j;k ¼

nnei jxihþjyjhþjzkhð Þ into equation 7 and dividing the resulting

equation by ei jxihþjyjhþjzkhð Þ, one obtains

n2 � 2Bnþ 1 ¼ 0; (8)
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where

B ¼ 1þ v2Dt2

2h2

XL

‘¼�L

w1
‘e

i‘jxh þ w2
‘e

i‘jyh þ w3
‘e

i‘jzh
� �

þ v4Dt4

24h4

XM
m¼�M

w4
meimjxh þ w5

meimjyh þ w6
meimjzh

� �

þ v4Dt4

24h4

XL1

‘¼�L1

XM1

m¼�M1

2 w7
‘mei ‘jxþmjyð Þh þ w8

‘mei ‘jxþmjzð Þh
�

þw9
‘mei ‘jyþmjzð Þh

�
; (9)

where i is the unit of imaginary numbers, jx, jy, and jz are

wavenumbers in the x, y, and z directions, respectively, and nn

is the Fourier amplitude at a particular step n.

The stability is guaranteed if the moduli of the roots of equa-

tion 8 are less than or equal to unity. This requires Bj j � 1.

Using equation 9, one can obtain

~ar2 þ
~b

12
r4

����
���� � 4;

where r is the same as in equation 3, and

~a ¼
XL

‘¼�L

w1
‘e

i‘jxh þ w2
‘e

i‘jyh þ w3
‘e

i‘jzh
� �

;

~b ¼
XM

m¼�M

w4
meimjxh þ w5

meimjyh þ w6
meimjzh

� �

þ
XL1

‘¼�L1

XM1

m¼�M1

2 w7
‘mei ‘jxþmjyð Þh þ w8

‘mei ‘jxþmjzð Þh
�

þw9
‘mei ‘jyþmjzð Þh

�
: (10)

Using the triangle inequality regarding the sum of complex

numbers, one can further obtain

ar2 þ b

12
r4 � 4;

where

a ¼
XL

‘¼�L

w1
‘

�� ��þ w2
‘

�� ��þ w3
‘

�� ��� �
;

b ¼
XM

m¼�M

w4
m

�� ��þ w5
m

�� ��þ w6
m

�� ��� �

þ
XL1

‘¼�L1

XM1

m¼�M1

2 w7
‘m

�� ��þ w8
‘m

�� ��þ w9
‘m

�� ��� �
: (11)

The number b represents the sum of absolute values of weights

for approximations of the fourth spatial derivatives (mixed

derivatives are counted twice).

From inequality (11), one has

r2 � 24

3aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9a2 þ 12b
p : (12)

Finally, one obtains

r � 2
ffiffiffi
6
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9a2 þ 12b
pp : (13)

The inequality 13 is the stability formula for the finite-difference

method 7

In principle, the stability formulas for higher-order temporal dis-

cretizations can be obtained in the same way by considering more

terms in equation 4. For example, for a Lax-Wendroff method with

sixth-order in time and general-order in space, its stability formula

depends on three parameters that correspond to the sum of absolute

values of weights for approximations of second spatial derivatives,

fourth spatial derivatives, and sixth spatial derivatives, respectively.

Of course, the formula is very complicated.

SOME NOTES ON STABILITY FORMULA 13

Relationship between formulas 3 and 13

Clearly, the formula 13 can be rewritten as

r � 2ffiffiffi
c
p ; (14)

where

c ¼ a

2
þ a

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4b

3a2

r
: (15)

One can readily see that c > a. Therefore, for the same order of

spatial accuracy, the stability limit of the finite-difference method

with fourth-order in time is smaller than that of the finite-differ-

ence method with second-order in time. This is because the

method with fourth-order in time involves approximations of

fourth derivatives, which constitute the parameter b. When b ¼ 0,

the formula 13 reduces to the formula 3. Therefore, the formula

13 can be regarded as a generalization of the formula 3.

Generalization to the case where Dx, Dy, and Dz are
different

From the derivation of formula 13, one can readily see that

the formula 13 can be generalized to

~r � vDt
~h
� 2

ffiffiffi
6
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9a2 þ 12b
pp ; (16)

where

~h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

1
3

1
Dx2 þ 1

Dy2 þ 1
Dz2

� �
vuut ; (17)

if the following conditions are satisfied:

XL

‘¼�L

w1
‘

�� �� ¼ XL

‘¼�L

w2
‘

�� �� ¼ XL

‘¼�L

w3
‘

�� ��; (18)

XM

m¼�M

w4
m

�� �� ¼ XM

m¼�M

w5
m

�� �� ¼ XM

m¼�M

w6
m

�� ��; (19)
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XL1

‘¼�L1

XM1

m¼�M1

w7
‘m

�� �� ¼ XL1

‘¼�L1

XM1

m¼�M1

w8
‘m

�� �� ¼ XL1

‘¼�L1

XM1

m¼�M1

w9
‘m

�� ��;
(20)

XM

m¼�M

w4
m

�� �� ¼ XL1

‘¼�L1

XM1

m¼�M1

w7
‘m

�� ��: (21)

Conditions 18, 19, and 20 are easily satisfied because the

weights for approximations of second and fourth derivatives are

often chosen as the same for different spatial directions. For

condition 21 to hold, care should be taken for the approximation

of the mixed fourth derivatives.

Wu et al. (1996) once used the quantity ~h, but did not name

it. After analyzing its mathematical structure, I call ~h the root-

harmonic-mean-square (rhms) spacing because the following

expression:

1

1
3

1
Dx2 þ 1

Dy2 þ 1
Dz2

� � (22)

is the harmonic mean of Dx2, Dy2, and Dz2.

Approximation of the mixed fourth derivatives

To facilitate the discussion and later calculation, I list the

weights for some approximations of second derivatives o2p
ox2 ,

op2

oy2 ,

and o2p
oz2 , and fourth derivatives o4p

ox4 ,
o4p
oy4 , and o4p

oz4 in Table 1 and

Table 2, respectively. For more details, see Fornberg (1996).

For the approximation of the mixed fourth derivatives,

there are two methods: the first method is to use approxima-

tions of second derivatives in different directions twice; the

second method is to derive the weights from a Taylor series

expansion of functions in two variables. Table 3 and Table 4

list the weights of fourth-order approximations for the mixed

fourth derivatives obtained with the first method and the sec-

ond method, respectively. In terms of computational cost, the

weights obtained with the second method are preferable

because less grid points are used in the approximation. Fur-

thermore, the sum of absolute values of weights for the sec-

ond method is 80
3

which is equal to the sum of absolute values

of weights for the fourth-order approximation of the non-

mixed fourth derivative, and thus the condition 21 is satisfied.

On the other hand, the sum of absolute values of weights for

the first method is 126
9

, and thus the condition 21 does not

hold.

In equation 7, because there is a factor Dt2 in the approxima-

tion of fourth spatial derivatives, the order of approximation of

fourth spatial derivatives can be lower than that of second spa-

tial derivatives. Table 5 lists the stability limits of equation 7

with fourth-order approximation for the fourth spatial deriva-

tives (Tables 2 and 4) and different-order approximation for the

second spatial derivatives (Table 1). To make a comparison, Ta-

ble 6 lists the stability limits of equation 2 with different-order

approximation for the second spatial derivatives (Table 1). For

Table 1. Weights of some approximations for second derivatives ›2p/›x2
, ›2p/›y2

, and ›2p/›z2
.

�5 �4 �3 �2 �1 0 1 2 3 4 5

Fourth-order �1/12 4/3 �5/2 4/3 �1/12

Sixth-order 1/90 �3/20 3/2 �49/18 3/2 �3/20 1/90

Eighth-order �1/560 8/315 �1/5 8/5 �205/72 8/5 �1/5 8/315 �1/560

Tenth-order 1/3150 �5/1008 5/126 �5/21 5/3 �5269/1800 5/3 �5/21 5/126 �5/1008 1/3150

Table 2. Weights of fourth-order approximations for fourth
derivatives ›4p/›x4, ›4p/›y4, and ›4p/›z4.

�3 �2 �1 0 1 2 3

�1/6 2 �13/2 28/3 �13/2 2 �1/6

Table 3. Weights of fourth-order approximations for the
mixed fourth derivatives ›4p/›x2›y2, ›4p/›x2›z2, and ›4p/
›y2›z2

obtained with the first method.

�2 �1 0 1 2

�2 1/144 �1/9 5/24 �1/9 1/144

�1 �1/9 16/9 �10/3 16/9 �1/9

0 5/24 �10/3 25/4 �10/3 5/24

1 �1/9 16/9 �10/3 16/9 �1/9

2 1/144 �1/9 5/24 �1/9 1/144

Table 4. Weights of fourth-order approximations for the
mixed fourth derivatives ›4p/›x2›y2, ›4p/›x2›z2, and ›4p/
›y2›z2

obtained with the second method.

�2 �1 0 1 2

�2 �1/12 1/6 �1/12

�1 �1/12 5/3 �19/6 5/3 �1/12

0 1/6 �19/6 6 �19/6 1/6

1 �1/12 5/3 �19/6 5/3 �1/12

2 �1/12 1/6 �1/12
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completeness, the corresponding stability limits for 1D and 2D

versions of equations 7 and 2 are also included. In Tables 5 and

6, the stability limits both decrease with increasing orders and

increasing dimensionality. The stability limits in Table 5 are

smaller than the corresponding ones in Table 6, which demon-

strates the theoretical comparison between formulas 3 and 13.

CONCLUSIONS

In this paper, a formula for stability of Lax-Wendroff meth-

ods with fourth-order of temporal accuracy and general-order of

spatial accuracy is obtained. This formula depends on two

parameters: one is the sum of absolute values of weights of the

finite-difference operators for second spatial derivatives; the

other is the sum of absolute values of weights of the finite-dif-

ference operators for fourth spatial derivatives. Compared with

their counterparts with second-order in time, the finite-difference

methods with fourth-order in time have smaller stability limits

due to the additional weights from approximations of the fourth

derivatives. Fortunately, the difference between these two stabil-

ity limits are small, particularly for 3D high-order methods.

When the sums of absolute values of weights for approxima-

tions of second derivatives and fourth derivatives in different

spatial directions equal each other, respectively, the stability for-

mula can be extended to accommodate different directional

spacings.

I also prove that methods, which are obtained by applying

high-order finite-difference approximations directly to the sec-

ond temporal derivative, are unstable. Based on this result, a

conclusion can be drawn that the “Bording’s conjecture” does

not hold for direct fourth-order and higher-order finite-difference

approximations for the second temporal derivative.
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APPENDIX A

INSTABILITY OF METHODS OBTAINED BY

APPLYING HIGH-ORDER FINITE-DIFFERENCE

APPROXIMATIONS DIRECTLY TO THE SECOND

TEMPORAL DERIVATIVE

One can obtain higher-temporal-accuracy versions of equation

2 by applying high-order finite-difference approximations

directly to the second temporal derivative in equation 1. This

results in

Table 6. Stability limits (r~max 5 2/Ha) of equation 2 with different-order approximation for the second spatial derivatives (Table 1).

1D 2D 3D

Fouth-order a¼ 16/3 a¼ 32/3 a¼ 16

r~max � 0.8660 r~max � 0.6124 r~max � 0.5

Sixth-order a¼ 272/45 a¼ 544/45 a¼ 272/15

r~max � 0.8135 r~max � 0.5752 r~max � 0.4697

Eighth-order a¼ 2048/315 a¼ 4096/315 a¼ 2048/105

r~max � 0.7844 r~max � 0.5546 r~max � 0.4529

Tenth-order a¼ 42983/6300 a¼ 42983/3150 a¼ 42983/2100

r~max � 0.7657 r~max � 0.5414 r~max � 0.4421

Table 5. Stability limits (r~max 5 2H6/H3a 1H9a2 1 12b) of equation 7 with fourth-order approximation for the fourth spatial
derivatives (Tables 2 and 4) and different-order approximation for the second spatial derivatives (Table 1).

1D 2D 3D

Fouth-order a¼ 16/3, b¼ 80/3 a¼ 32/3, b¼ 320/3 a¼ 16, b¼ 720/3

r~max � 0.7746 r~max � 0.5477 r~max � 0.4472

Sixth-order a¼ 272/45, b¼ 80/3 a¼ 544/45, b¼ 320/3 a¼ 272/15, b¼ 720/3

r~max � 0.7419 r~max � 0.5246 r~max � 0.4283

Eighth-order a¼ 2048/315, b¼ 80/3 a¼ 4096/315, b¼ 320/3 a¼ 2048/105, b¼ 720/3

r~max � 0.7225 r~max � 0.5109 r~max � 0.4172

Tenth-order a¼ 42983/6300, b¼ 80/3 a¼ 42983/3150, b¼ 320/3 a¼ 42983/2100, b¼ 720/3

r~max � 0.7079 r~max � 0.5018 r~max � 0.4097

T41A stability formula for L-W methods
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XM

m¼�M

cmpnþm
i;j;k

� �
¼

v2
i;j;kDt2

h2

XL

‘¼�L

w1
‘p

n
iþ‘;j;k þ w2

‘p
n
i;jþ‘;k

�

þw3
‘p

n
i;j;kþ‘

�
; (A-1)

where cm ¼ c�m and M � 2. Equation A-1 has the temporal accu-

racy of O Dt2Mð Þ.
Now I will prove that equation A-1 is unstable. Replacing vi;j;k

by v, substituting the expression pn
i;j;k ¼ nnei jxiDxþjyjDyþjzkDzð Þ into

equation A-1 and dividing the resulting equation by

ei jxihþjyjhþjzkhð Þ, one obtains

cMn2M þ cM�1n
2M�1 þ � � � þ c0 � dð ÞnM

þ � � � þ c� M�1ð Þnþ c�M ¼ 0; (A-2)

where

d ¼ v2Dt2

h2

XL

‘¼�L

w1
‘e

i‘jxh þ w2
‘e

i‘jyh þ w3
‘e

i‘jzh
� �

: (A-3)

Multiplying both sides of equation (A-2) by 1=cM and using the

fact that cM ¼ c�M leads to

n2M þ cM�1

cM
n2M�1 þ � � � þ c0 � dð Þ

cM
nM � � �

þ
c� M�1ð Þ

cM
nþ 1 ¼ 0: (A-4)

The weights cm have an analytical expression (Fornberg, 1996):

cm ¼
2 �1ð Þmþ1 M!ð Þ2

m2 Mþmð Þ! M�mð Þ! ; m ¼ 61;62;…;6M;

�2
PM
i¼1

1
i2; m ¼ 0:

8><
>: (A-5)

Noting that M � 1 � 1 since M � 2, one obtains the coefficient of

n2M�1 in equation A-4 by using equation A-5:

cM�1

cM
¼ �2M

M2

M � 1ð Þ2
: (A-6)

It follows from equation (A-6) that

cM�1

cM

����
���� > 2M: (A-7)

Suppose that equation A-4 has 2M roots ri; i ¼ 1; 2;…; 2M; then

one obtains

Y2M

i¼1

n� rið Þ ¼ n2M þ cM�1

cM
n2M�1 þ � � � þ c0 � dð Þ

cM
nM � � �

þ
c� M�1ð Þ

cM
nþ 1: (A-8)

Note that every term of expansion of
Q2M

i¼1 n� rið Þ is a product of

2M numbers (n or �ri). Therefore, it follows from A-8 that

cM�1

cM
¼
X2M

i¼1

�rið Þ: (A-9)

Now I use the method of proof by contradiction. Suppose that the

moduli of ri are less than or equal to unity, i.e.,

rij j � 1; i ¼ 1; 2;…; 2M: (A-10)

Then, it follows from A-9 and A-10 that

cM�1

cM

����
���� �

X2M

i¼1

rij j � 2M: (A-11)

Inequality A-11 contradicts with inequality A-7. Therefore, there

is at least one root of equation A-4 whose modulus is greater than

one. This shows that equation A-1 is unstable.
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