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The rotated optimal 9-point scheme for frequency-domain scalar wave equation is widely used in frequency-
domain full waveform inversion. This scheme requires equal directional sampling intervals, which limits its applica-
bility. Recently, an average-derivative method was proposed to overcome this restriction. However, the average-
derivative method is an algebraic approach, and therefore it does not inherit the geometrical property (coordinate
transformations) of the rotated optimal 9-point scheme. In this paper, a geometrical approach is developed, and a
generalized optimal 9-point scheme is constructed. This new scheme is based on a directional-derivative method,
and includes the rotated optimal 9-point scheme as a special case. Like the average-derivative method, the number
of grid points per wavelength is reduced from approximately 13 to approximately 4 by this new 9-point optimal
scheme for both equal and unequal directional sampling intervals in comparison with the classical 5-point scheme.
Unlike the average-derivative method, this generalized optimal 9-point scheme shares the geometrical property of
the rotated optimal 9-point scheme.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Recently, full waveform inversion (FWI) has been attracting a lot of
attention in community of exploration geophysics. Generally speaking,
FWI can be described as a full-wavefield-modeling-based data-fitting
process to extract structural information of subsurface from seismograms
(Virieux and Operto, 2009). FWI can be classified into two categories:
time-domain FWI (Boonyasiriwat et al., 2009; Gauthier et al., 1986;
Tarantola, 1984) and frequency-domain FWI (Pratt, 1999; Pratt and
Worthington, 1990; Pratt et al., 1998).

Forwardmodeling is an important foundation of FWI. In the context of
FWI, Pratt and Worthington (1990) developed the classical 5-point
scheme for 2D frequency-domain scalar wave equation which imposes
no restriction on directional sampling intervals. However, this scheme
suffers from severe dispersion errors when large sampling intervals
(4 points per smallest wavelength) are employed. To reduce the disper-
sion errors, very small sampling intervals (13 points per smallest wave-
length) are required, which results in a significant increase of both
storage requirements and CPU time.

Based on a rotated coordinate system, Jo et al. (1996) developed a
9-point operator to approximate the Laplacian and the mass accelera-
tion terms. The coefficients of the 9-point operator are determined by
obtaining the best normalized phase curves through an optimization
process. Compared to the classical 5-point scheme developed by Pratt
and Worthington (1990), this optimal 9-point scheme reduces the
rights reserved.
number of grid points per wavelength to less than 4, and leads to signif-
icant reductions of computer memory and CPU time. However, this op-
timal 9-point scheme loses theflexibility of the classical 5-point scheme
because it requires equal directional sampling intervals (Jo et al., 1996).

To overcome the disadvantage of the rotated optimal 9-point scheme,
Chen (2012) developed an average-derivative method. Unlike the meth-
od used by Jo et al. (1996), the average-derivative method does not need
to use rotated coordinate system and only involves algebraic operations.
In this paper, I will develop another approach to overcome the disadvan-
tage of the rotated optimal 9-point scheme. This approach is based on
the directional-derivative method proposed by Saenger et al. (2000).
The directional-derivative method is closely related to the rotated-
coordinate-system method, but has more flexibility.

In the next section, I will present the generalized optimal 9-point
scheme based on the directional-derivative method and staggered-grid
technique. This is followed by optimization of coefficients and a numeri-
cal dispersion analysis. Finally, I perform two numerical experiments on a
homogenous model and theMarmousi model to test the generalized op-
timal 9-point scheme.

2. Generalized optimal 9-point scheme

Consider the two-dimensional scalar wave equation in frequency
domain

∂2P
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where P is the pressurewavefield,ω is the angular frequency, and v(x,z)
is the velocity.

The classical 5-point scheme for Eq. (1) is

Pmþ1; n−2Pm; n þ Pm−1; n

Δx2
þ Pm; nþ1−2Pm; n þ Pm; n−1

Δz2
þ ω2

v2m; n
Pm; n ¼ 0;

ð2Þ

where Pm, n≈P(mΔx,nΔz), and Δx and Δz are directional sampling in-
tervals in the x-direction and z-direction, respectively.

As can be seen later (Section 3), within the phase velocity error of
±1%, the classical 5-point scheme (2) requires approximately 13 grid
points per shortestwavelength. In order to reduce numerical dispersion
of the scheme (2), very fine grids are required. This leads to a huge
amount of computer storage and CPU time. Therefore, reducing the
number of grid points required per shortest wavelength is needed.

To this aim, a 9-point scheme for Eq. (1) was introduced by Jo et al.
(1996):

a
Pmþ1; n þ Pm−1; n−4Pm; n þ Pm; nþ1 þ Pm; n−1

Δ2

þ 1−að Þ Pmþ1; nþ1 þ Pm−1; nþ1−4Pm; n þ Pmþ1; n−1 þ Pm−1; n−1

2Δ2
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v2

�
cPm; n þ d Pmþ1; n þ Pm−1; n þ Pm; nþ1 þ Pm; n−1

� �

þe Pmþ1; nþ1 þ Pm−1; nþ1 þ Pmþ1; n−1 þ Pm−1; n−1

� ��
¼ 0;

ð3Þ

where Δx=Δz=Δ. The constants a, c and d are weighting coeffi-
cients, and e ¼ 1−c−4d

4 : For details, See Fig. 1a.
The rotated 9-point optimal scheme (3)with coefficients (a=0.5461,

c=0.6248, and d=0.0938) reduces the number of grid points per
shortest wavelength to less than 4, and results in remarkable reductions
of computer storage and CPU time. However, this scheme has a require-
ment of Δx=Δz, which limits its application.

Now I try to develop a generalization of scheme (3)which is also valid
for Δx≠Δz. When Δx≠Δz, the idea of rotated coordinate system can be
developed into the directional-derivative method (Saenger et al., 2000).
For details, see Fig. 1b. When Δx≠Δz, the two directions l1 and l2 are
not orthogonal to each other. One can compute directional-derivatives
as follows:

∂P
∂l1

¼ Δx
Δr

∂P
∂x−

Δz
Δr

∂P
∂z ; ð4Þ

∂P
∂l2

¼ Δx
Δr

∂P
∂x þ Δz

Δr
∂P
∂z ; ð5Þ

where Δr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δx2 þ Δz2

p
. From Eqs. (4) and (5), one can obtain
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From Eqs. (6) and (7), one can further obtain
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From Eq. (8), an approximation to the Laplacian can be obtained:

∂2P
∂x2
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where Δ̃ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

1
Δx2

þ 1
Δz2

ð Þp : Δ̃ can be called the root-harmonic-mean-square

interval of Δx and Δz (Chen, 2011).
Using Eq. (9), one can obtain the following scheme
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where

A ¼ 0; Δx ¼ Δz;
Pmþ2; n−Pm; nþ2−Pm; n−2 þ Pm−2; n; Δx≠Δz:

	

Scheme (10) is a 13-point scheme. Compared to the rotated opti-
mal 9-point scheme, it includes four additional grid points. This is
caused by the second-order mixed partial derivative in Eq. (8).
When Δx=Δz, the term involving the mixed partial derivative be-
comes zero, and the 13-point scheme becomes the rotated optimal
9-point scheme.

On the other hand, without the condition of Δx=Δz, the scheme
(10) can be simplified too. Using a staggered-grid technique (Štekl
and Pratt, 1998), the second term on the right-hand side of Eq. (8)
can be discretized as follows:
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Using the approximation (11), the 13-point scheme (10) can be
simplified into a 9-point scheme:
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The scheme (12) is a generalized optimal 9-point scheme because
it includes the rotated optimal 9-point scheme (3) as a special case
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Fig. 1. Schematic of the rotated optimal 9-point scheme (a), the 13-point optimal scheme (b), and the generalized optimal 9-point scheme (c).
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when Δx=Δz. In addition, the scheme (12) also includes the classical
5-point scheme (2) as a special case when a=1, c=1, and d=0.

3. Optimization and dispersion analysis

In this section, I perform optimization of the coefficients in the
generalized 9-point scheme (12), and then make dispersion analysis.

Substituting P x; z;ωð Þ ¼ P0ei kxxþkzzð Þ into Eq. (12), one obtains the
discrete dispersion relation

ω2

v2
¼

2a 1−Exð Þ þ r2 1−Ezð Þ
h i

þ 1−að Þ r2 þ 1
� �

1−ExEzð Þ þ r2−1
� �

Ex−Ezð Þ
h i

Δx2 cþ 2d Ex þ Ezð Þ þ 4eExEz½ � ;

ð13Þ

where r ¼ Δx
Δz; Ex=cos(kxΔx), and Ez=cos(kzΔz). Here, I first consider

the case Δx≥Δz.
FromEq. (13), the normalized phase velocity can be derived as follows

Vph

v
¼

2a 1−Exð Þ þ r2 1−Ezð Þ
h i

þ 1−að Þ r2 þ 1
� �

1−ExEzð Þ þ r2−1
� �

Ex−Ezð Þ
h in o1

2

2π
G cþ 2d Ex þ Ezð Þ þ 4eExEz½ �12 ;

ð14Þ

where Vph is the phase velocity and

Ex ¼ cos kxΔxð Þ ¼ cos
2π sin θ

G

� �
; Ez ¼ cos

2π cos θ
Gr

� �
;

where kx=k sin θ, kz=k cos θ, and G ¼ 2π
kΔx:

The coefficients a, c, and d are determined by minimizing the
phase error:

E a; c;dð Þ ¼ ∫ ∫ 1−
Vph θ; k̃; a; c;d
� �

v

2
4

3
5
2

d k̃d θ; ð15Þ

where k̃ ¼ 1
G:

The ranges of k̃ and θ are taken as [0,0.25] and 0; π2½ �; respectively. A
constrained nonlinear optimization program fmincon in Matlab is
used to solve the optimization problem (15). The optimization coeffi-
cients for different r ¼ Δx

Δz are listed in Table 1. One can see that the co-
efficient a varies with Δx

Δz; and the changes in coefficients c and d are
small.

Now I perform numerical dispersion analysis. Fig. 2 shows the nor-
malized phase velocity curves of the classical five-point scheme (2)
and the generalized optimal 9-point scheme (12) for different Δx

Δz

when Δx≥Δz. The propagation angles are taken from 0° to 90° with
an increment of 15°. From this figure, one can conclude that within
the phase error of ±1%, the classical five-point scheme (2) requires
approximately 13 grid points (precisely 12.8) per shortest wave-
length, while the generalized optimal 9-point scheme (12) requires
approximately 4 points (precisely 3.6 points) for all ratios of direc-
tional sampling intervals.
Table 1
Optimization coefficients for a, c, and d for different Δx

Δz when Δx≥Δz.

a c d

Δx
Δz ¼ 1 0.588786 0.634826 0.091293
Δx
Δz ¼ 2 0.604417 0.636103 0.090974
Δx
Δz ¼ 3 0.611502 0.635736 0.091071
Δx
Δz ¼ 4 0.615393 0.635805 0.091049
When Δz>Δx, one should define G as G ¼ 2π
kΔz; and then the same

optimization process can be made. The optimization coefficients for
the case of Δz>Δx are listed in Table 2. For the case of Δz>Δx, the
same conclusions on dispersion can be drawn.

4. Numerical examples

In this section, I present two numerical examples to verify the theo-
retical analysis on the classical 5-point scheme (2) and the generalized
optimal 9-point scheme.

The first numerical example is about a homogeneous velocity
model with a velocity of 3000 m/s (Fig. 3). Analytical solution can
be obtained in this case to make comparisons with the numerical so-
lutions. Horizontal and vertical samplings are nx=101 and nz=41,
respectively. A Ricker wavelet with a peak frequency of 25 Hz is
placed at the center of the model as a source, and a receiver is set
25 samples away from the source horizontally. The maximum fre-
quency used in the modeling is 70 Hz. According to the criterion of
4 grid points per smallest wavelength, horizontal sampling interval
is determined by dx=3000/70/4 m ≈11 m. Vertical sampling interval
is taken as dz=dx/2. For this ratio of directional sampling intervals, the
optimization coefficients of the scheme (12) is a=0.604417, c=
0.636103, and d=0.090974.

For the homogeneousmodel, the analytical solution can be obtained
as (Alford et al., 1974):

P x; z; tð Þ ¼ iπF−1 H 2ð Þ
0

ω
v
r

� �
F f tð Þð Þ

h i
; ð16Þ

whereF andF−1 are forward and inverse Fourier transformations with
respect to time, respectively, f(t) is the Ricker wavelet, H0

(2) is the second

Hankel function of order zero, andr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x−x0ð Þ2 þ z−z0ð Þ2

q
:Here (x0,z0)

is the source position.
Fig. 4 depicts the results computed with the analytical formu-

la (16), the classical 5-point scheme (2) and the generalized optimal
9-point scheme (12), respectively. From the figure, one can see that
the simulation result with the generalized optimal 9-point scheme
(12) agrees well with the analytical result while the result computed
with the classical 5-point scheme (2) exhibits discrepancies due to
the numerical dispersion.

Second, I consider a more realistic model. Fig. 5a shows the
Marmousi model. Horizontal and vertical samplings are nx=737
and nz=751, respectively. The sampling intervals of the Marmousi
model are dx=12.5 m and dz=4 m. For this ratio of directional sam-
pling intervals, the optimization coefficients of the generalized opti-
mal 9-point scheme (12) is a=0.612116, c=0.635714, and d=
0.091071. A Ricker wavelet with peak frequency of 15 Hz is placed
at (x=4600 m, z=1500 m) as a source which is marked by a star.
Absorbing boundary conditions with 45-degree one-way equation
are used at the four sides of the model. Fig. 5b and c shows the
15-Hz and 30-Hz monochromatic wavefields, respectively. No visible
dispersion and boundary reflections can be found. For the Marmousi
model, the rotated optimal 9-point scheme cannot be applied due to
the fact of dx≠dz, but the generalized optimal 9-point scheme is
still valid due to its flexibility.

5. Discussions

The average-derivative method (Chen, 2012) and the directional-
derivative method developed in this paper both generalize the rotated
optimal 9-point scheme. The average-derivativemethod ismore gener-
al, and the directional-derivative possesses the geometrical property. In
terms of accuracy, the average-derivativemethod is slightly higher than



0 0.05 0.1 0.15 0.2 0.25
0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1/G

V
ph

/v

5−point scheme (Δ x/Δ z=1)

0o

15o

30o

45o

60o

75o

90o

0 0.05 0.1 0.15 0.2 0.25
0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1/G

V
ph

/v

9−point scheme (Δ x/Δ z=1)

0o

15o

30o

45o

60o

75o

90o

0 0.05 0.1 0.15 0.2 0.25
0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1/G

V
ph

/v

5−point scheme (Δ x/Δ z=2)

0o

15o

30o

45o

60o

75o

90o

0 0.05 0.1 0.15 0.2 0.25
0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1/G

V
ph

/v

9−point scheme (Δ x/Δ z=2)

0o

15o

30o

45o

60o

75o

90o

0 0.05 0.1 0.15 0.2 0.25
0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1/G

V
ph

/v

5−point scheme (Δ x/Δ z=3)

0o

15o

30o

45o

60o

75o

90o

0 0.05 0.1 0.15 0.2 0.25
0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1/G

V
ph

/v

9−point scheme (Δ x/Δ z=3)

0o

15o

30o

45o

60o

75o

90o

0 0.05 0.1 0.15 0.2 0.25
0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1/G

V
ph

/v

5−point scheme (Δ x/Δ z=4)

0o

15o

30o

45o

60o

75o

90o

0 0.05 0.1 0.15 0.2 0.25
0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1/G

V
ph

/v

9−point scheme (Δ x/Δ z=4)

0o

15o

30o

45o

60o

75o

90o

Fig. 2. Normalized phase velocity curves of the classical five-point scheme and the generalized optimal 9-point scheme for different Δx
Δz when Δx≥Δz.
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Table 2
Optimization coefficients for a, c, and d for different Δx

Δz when ΔxbΔz.

a c d

Δz
Δx ¼ 2 0.604417 0.636103 0.090974
Δz
Δx ¼ 3 0.611502 0.635736 0.091071
Δz
Δx ¼ 4 0.615393 0.635805 0.091049

∇* 
Source Receiver 

x

z

Fig. 3. Schematic of the homogeneous model.
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the directive–derivative method. When considering the geometrical
property, the directional-derivative method is a better choice.

The directive–derivative method can be generalized to the 3D case
by using the coordinate transformations developed in Operto et al.
(2007). In addition, for a time-domain wave equation, its discretization
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Fig. 4. Seismograms computed with the analytical method (a), the classical five-point sche
involves both temporal and spatial discretization. Therefore, the gener-
alized optimal 9-point scheme (12) can be easily adapted to obtain a
time-domain scheme:
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where Pm, n
l ≈P(mΔx,nΔz,lΔt), and Δt is the time-step size.

6. Conclusions

Based on the directional-derivative approach, I have presented a gen-
eralized optimal 9-point scheme which overcomes the disadvantage of
the rotated optimal 9-point scheme by removing the requirement of
equal directional sampling intervals. In addition, this new scheme inherits
the geometrical property of the rotated optimal 9-point scheme. Com-
pared to the classical 5-point scheme, the number of grid points per
wavelength is reduced from approximately 13 to approximately 4 by
this new 9-point optimal scheme for both equal and unequal directional
sampling intervals. Two numerical examples demonstrate the greater ac-
curacy and flexibility of the generalized optimal 9-point scheme.
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Fig. 5.Marmousi model (a), and the 15-Hz (b) and 30-Hz (c) monochromatic wavefields
computed with the generalized optimal 9-point scheme.
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