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ABSTRACT

Laplace-domain modeling is an important foundation
of Laplace-domain full-waveform inversion. However,
dispersion analysis for Laplace-domain numerical schemes
has not been completely established. This hampers the con-
struction and optimization of Laplace-domain modeling
schemes. By defining a pseudowavelength as a scaled skin
depth, I establish a method for Laplace-domain numerical
dispersion analysis that is parallel to its frequency-domain
counterpart. This method is then applied to an average-
derivative nine-point scheme for Laplace-domain scalar wave
equation. Within the relative error of 1%, the Laplace-domain
average-derivative optimal scheme requires four grid points
per smallest pseudowavelength, whereas the classic five-point
scheme requires 13 grid points per smallest pseudowave-
length for general directional sampling intervals. The aver-
age-derivative optimal scheme is more accurate than the
classic five-point scheme for the same sampling intervals.
By using much smaller sampling intervals, the classic five-
point scheme can approach the accuracy of the average-
derivative optimal scheme, but the corresponding cost is
much higher in terms of storage requirement and computa-
tional time.

INTRODUCTION

Based on seismic data lacking low-frequency information, Lap-
lace-domain full-waveform inversion (FWI) can yield a smooth
velocity model that can be used as a starting model for subsequent
frequency-domain FWI. Therefore, Laplace-domain FWI plays an
important role in facilitating application of FWI to real data (Shin
and Cha, 2008). The success of Laplace-domain FWI lies in that (1)
the objective function in Laplace domain is much smoother than its

frequency-domain counterpart, thus considerably mitigating the
problem of local minima (Shin and Ha, 2008); (2) Lapace-domain
FWI is less sensitive to the lack of low-frequency information in real
seismic data in comparison with Fourier-domain FWI (Ha and Shin,
2012). Combined with conventional FWI, Lapace-domain FWI has
made important contributions to the successful application of FWI
to real data (Shin and Cha, 2009; Shin et al., 2010; Ha et al., 2012).
The key computational kernel of Laplace-domain FWI is Lap-

lace-domain forward modeling. Numerical modeling schemes for
frequency-domain modeling can be directly adapted to that for Lap-
lace-domain modeling. However, the dispersion analysis of the Lap-
lace-domain schemes has not been completely established (Shin
and Cha, 2008). Shin et al. (2002) have developed a method to per-
form Laplace-domain numerical dispersion analysis. They express
Laplace-domain dispersion relation as the square root of the ratio of
numerical eigenvalue to analytical eigenvalue. However, this
dispersion relation depends on damping constant, velocity, and
sampling interval as well as propagation angle. Therefore, it is dif-
ficult to draw a general conclusion and to optimize the scheme.
To establish a more general method for Laplace-domain

dispersion analysis, I will now examine the frequency-domain
dispersion analysis. In frequency domain, the dispersion relation
is expressed as the normalized phase velocity. This dispersion re-
lation depends only on the number of grid points per wavelength as
well as propagation angle. Therefore, the key is how to define a
pseudowavelength in Laplace-domain. This pseudowavelength
should be parallel to its frequency-domain counterpart. The concept
of pseudowavelength is proposed in Shin et al. (2002) but its def-
inition is not explicitly given.
Based on the skin depth in Laplace-domain acoustic wave equa-

tion (Um et al., 2012), a pseudowavelength in Laplace-domain can
be defined as a scaled skin depth. Accordingly, a dispersion relation
can be expressed as a normalized attenuation propagation velocity.
In this way, just like the frequency-domain case, this dispersion re-
lation depends only on the number of grid points per pseudowave-
length as well as propagation angle. Therefore, on one hand, one
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can easily draw a general conclusion on Laplace-domain dispersion
analysis. For example, by performing dispersion analysis based on
the normalized attenuation propagation velocity, one can draw a
general conclusion that the classic five-point scheme in Laplace do-
main requires 13 grid points per smallest pseudowavelength to be
within the relative error of 1%. On the other hand, one can perform
optimization of Laplace-domain modeling schemes in the same way
as in the frequency-domain case. Therefore, the frequency-domain
average-derivative optimal scheme (Chen, 2012) can be easily
adapted to the Laplace-domain case by performing the correspond-
ing dispersion analysis and optimization.
In the next section, I will present the Laplace-domain average-

derivative optimal scheme. This is followed by the optimization
of coefficients and a numerical dispersion analysis. Numerical ex-
amples are then presented to demonstrate the theoretical analysis.

A LAPLACE-DOMAIN AVERAGE-DERIVATIVE
SCHEME

Consider the 2D scalar wave equation in Laplace domain (Shin
et al., 2002)

∂2P
∂x2

þ ∂2P
∂z2

−
s2

v2
P ¼ 0; (1)

where P is the pressure wavefield, the real number s is the Laplace
damping constant, and vðx; zÞ is the velocity. Numerical schemes
for equation 1 can be directly obtained from the corresponding fre-
quency-domain schemes. Frequency-domain schemes include the
classic five-point scheme (Pratt and Worthington, 1990), the opti-
mal nine-point scheme for equal directional sampling intervals (Jo
et al., 1996), the average-derivative optimal scheme (Chen, 2012),
and the directional-derivative optimal scheme (Chen, 2013).
Because the average-derivative optimal scheme accommodates

general directional sampling intervals and has great flexibility in
generalization (Chen, 2012), I apply the average-derivative method
in this paper. Based on the frequency-domain scheme developed in
Chen (2012), I consider an average-derivative nine-point scheme for
equation 1

P̄mþ1;n − 2P̄m;n þ P̄m−1;n

Δx2
þ

~Pm;nþ1 − 2 ~Pm;n þ ~Pm;n−1

Δz2

−
s2

v2m;n
½cPm;n þ dðPmþ1;n þ Pm−1;n þ Pm;nþ1 þ Pm;n−1Þ

þ bðPmþ1;nþ1 þ Pm−1;nþ1 þ Pmþ1;n−1 þ Pm−1;n−1Þ� ¼ 0;

(2)

where

P̄mþj;n ¼
1 − α

2
Pmþj;nþ1 þ αPmþj;n þ

1 − α

2
Pmþj;n−1;

j ¼ 1; 0;−1; (3)

~Pm;nþj ¼
1 − β

2
Pmþ1;nþj þ βPm;nþj þ

1 − β

2
Pm−1;nþj;

j ¼ 1; 0;−1. (4)

Here, Pm;n ≈ PðmΔx; nΔzÞ, vn;m ≈ vðmΔx; nΔzÞ, Δx and Δz are
sampling intervals in x- and z-directions, respectively, α, β, c, and d
are weighted coefficients that should be optimized, and b ¼ 1−c−4d

4
:

The average-derivative nine-point scheme (equation 2) includes
the classic five-point scheme as a special case because when α ¼ 1,
β ¼ 1, c ¼ 1, and d ¼ 0, the scheme (equation 2) becomes

Pmþ1;n − 2Pm;n þ Pm−1;n

Δx2
þ Pm;nþ1 − 2Pm;n þ Pm;n−1

Δz2

−
s2

v2m;n
Pm;n ¼ 0. (5)

OPTIMIZATION AND DISPERSION ANALYSIS

Consider an attenuating function in the following form

Pðk; rÞ ¼ P0e−kr; (6)

where r ¼ sinðθÞxþ cosðθÞz, P0 is the amplitude at r ¼ 0, and θ is
the propagation angle.
A skin depth δ is defined as the distance at which Pðk; rÞ is

attenuated to 1
e of P0 (Um et al., 2012). Therefore, δ ¼ 1

k. A pseu-
dowavelength λ is defined as the distance at which Pðk; rÞ is attenu-
ated to 1

e2π of P0. According to this definition, λ ¼ 2π
k ¼ 2πδ

(Figure 1). Accordingly, k is defined as a pseudowavenumber. Sub-
stituting equation 6 into equation 1, one can obtain s

v ¼ k. Thus,
v ¼ s

k ¼ s
2π λ. In terms of this relation, v can be regarded as the

propagation velocity of attenuation.
Substituting equation 6 into equation 2 and assuming a constant

v, one obtains the discrete dispersion relation

s2

v2
¼ A

BΔx2
; (7)

where

A¼
�
ð1−αÞcosh

�
2π cosðθÞ

RG

�
þα

��
2 cosh

�
2π sinðθÞ

G

�
−2

�

þR2

�
ð1−βÞcosh

�
2π sinðθÞ

G

�
þβ

�

×
�
2 cosh

�
2π cosðθÞ

RG

�
−2

�
;

B¼cþ2d

�
cosh

�
2π cosðθÞ

RG

�
þcosh

�
2π sinðθÞ

G

��

þ4b cosh

�
2π cosðθÞ

RG

�
cosh

�
2π sinðθÞ

G

�
;

and where G ¼ 2π
kΔx is the number of grid point per pseudowave-

length, and R ¼ Δx
Δz. Here, I consider the case Δx ≥ Δz.

From equation 7, the numerical propagation velocity of attenu-
ation can be derived as follows

Vnum ¼ s
k
¼ v

kΔx

�
A
B

�1
2

: (8)
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One can then obtain the normalized numerical propagation velocity
of attenuation

Vnum

v
¼ G

2π

�
A
B

�1
2

: (9)

The coefficients α, β, c, and d are determined by minimizing the
velocity error

Eðα; β; c; dÞ ¼
Z Z �

1 −
Vnumðθ; ~k; α; β; c; dÞ

v

�2
d~kdθ;

(10)

where ~k ¼ 1
G.

The ranges of ~k and θ are taken as ½0; 0.25� and ½0; π
2
�, respectively.

I use a constrained nonlinear optimization program fmincon in
Matlab to determine the optimization coefficients. The optimization
coefficients for different R ¼ Δx

Δz are listed in Table 1. The coeffi-
cients are different from their counterparts for frequency-domain
average-derivative optimal scheme (Chen, 2012). This is because
dispersion analysis in Laplace-domain is fundamentally different
from that in Fourier-domain in spite of formal similarity between
the two. In the same way, wavelength and pseudowavelength are two
independent concepts although they share some formal similarity.
If Δz > Δx, one should define G ¼ 2π

kΔz, and R ¼ Δz
Δx. For the case

of Δz > Δx, the only change in the optimization coefficients is that
the coefficients α and β are exchanged.
Now I perform numerical dispersion analysis. Figure 2 shows

normalized numerical attenuation propagation velocity surfaces
of the five-point scheme (equation 5) and the average-derivative op-
timal nine-point scheme (equation 2) for different propagation an-
gles. The surface is a function of 1

G and Δx
Δz. For the five-point scheme

(equation 5), the velocity errors increase with increasing 1
G. On the

other hand, the velocity errors decrease with increasing Δx
Δz for θ ¼

0° and θ ¼ 45° because of smaller Δz in comparison with Δx. For
θ ¼ 90°, the velocity errors do not vary with Δx

Δz because this case
corresponds to horizontal propagation and has no relevance to Δz.
For the average-derivative optimal nine-point scheme (equation 2),
the velocity errors remain small for all values of 1

G,
Δx
Δz, and θ. Here, I

only show the results for the case of Δx ≥ Δz. For the case of
Δx < Δz, similar results can be obtained.
Within the relative error of 1%, the five-point scheme (equa-

tion 11) requires 13 grid points per shortest pseudowavelength,
whereas the average-derivative optimal nine-point scheme (equa-
tion 2) requires four grid points per shortest pseudowavelength
for equal and unequal directional sampling intervals. For a hetero-
geneous media, the grid size is usually determined by using the min-
imum velocity. Another choice is to use the average velocity (Shin
et al., 2002).

NUMERICAL EXAMPLES

In this section, I present numerical examples to verify the theo-
retical analysis on the average-derivative optimal nine-point scheme
(equation 2) and the classic five-point scheme (equation 5).
Consider a homogeneous velocity model with a velocity

of 2000 m∕s. Horizontal and vertical distances are both 10 km
(Figure 3). The Laplace damping constant s is taken to be 10π.

Accordingly, the pseudowavelength is λ ¼ 2000 m∕ð10π∕2πÞ ¼
400 m. According to the criterion of four grid points per smallest
pseudowavelength, horizontal sampling interval is determined by
Δx ¼ 400 m∕4 ¼ 100 m. Vertical sampling interval is taken as
Δz ¼ Δx∕2 ¼ 50 m. For this ratio of directional sampling inter-
vals, the optimization coefficients of the scheme (equation 2) are
α ¼ 0.828891, β ¼ 0.866232, c ¼ 0.693025, and d ¼ 0.076743

(Table 1). Horizontal and vertical samplings are nx ¼ 101 and
nz ¼ 201, respectively. A Ricker wavelet with peak frequency of
5 Hz is placed at the center of the model as a source, and a receiver
array is placed at a depth of 2.5 km.
For the analytical solution, the following formula is used (Alford

et al., 1974)

Pðx; z; sÞ ¼ iπHð2Þ
0

�
−is
v

r

�
FðsÞ; (11)

where i is the imaginary unit, Hð2Þ
0 is the second Hankel function of

order zero, FðsÞ is the Laplace transform of the Ricker wavelet, and
r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx − x0Þ2 þ ðz − z0Þ2

p
. Here, ðx0; z0Þ is the source position.

δ λ

P
0

P
0
/e

P
0
/e2π

P

r

Figure 1. Schematic illustrating the concepts of skin depth and
pseudowavelength. The vertical axis is the amplitude of the attenu-
ation function in equation 6, and the horizontal axis represents the
distance r.

Table 1. Optimization coefficients for α, β, c, and d for
different Δx

Δz when Δx ≥ Δz.

α β c d

Δx
Δz ¼ 1 0.863852 0.863852 0.693994 0.076501
Δx
Δz ¼ 1.5 0.879003 0.851501 0.691999 0.077000
Δx
Δz ¼ 2 0.828891 0.866232 0.693025 0.076743
Δx
Δz ¼ 2.5 0.822773 0.862987 0.693373 0.076656
Δx
Δz ¼ 3 0.834753 0.858629 0.693395 0.076651
Δx
Δz ¼ 3.5 0.849042 0.855909 0.693397 0.076650
Δx
Δz ¼ 4 0.860738 0.854423 0.693391 0.076652
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In numerical comparisons, the following relative error of Lap-
lace-domain wavefield is used

RE ¼
����wc − wa

wa

����; (12)

where wc and wa are the calculated wavefield and the analytical
wavefield, respectively.
Figure 4a shows the Laplace-domain seismograms computed

with the analytical formula (equation 11), the classic five-point
scheme (equation 5), and the average-derivative optimal nine-point
scheme (equation 2). Figure 4b shows the corresponding relative
errors of the classic five-point scheme (equation 5) and the aver-
age-derivative optimal nine-point scheme (equation 2). The five-
point scheme and the nine-point scheme use the directional sam-
pling intervals of Δx ¼ 100 m and Δz ¼ 50 m. The simulation re-
sult with the average-derivative optimal nine-point scheme
(equation 2) is in good agreement with the analytical result. The
result with the classic five-point scheme (equation 5) exhibits am-
plitude errors that become larger as the offset increases. The abso-
lute errors shown in Figure 4a do not seem very large; however, the
relative errors shown in Figure 4b are very large and reach 786% at
far offsets. This is because of the extremely small values of the Lap-
lace-domain wavefield at far offsets. Figure 4c is an enlarged part of
Figure 4b, which zooms in on the relative errors of the average-
derivative optimal nine-point scheme (equation 2). One can see that
the relative error at far offsets is reduced to 21%.
In Figure 5, I show another case when the Laplace damping

constant s is taken to be 5π. In this case, the five-point scheme
(equation 5) and the average-derivative optimal nine-point scheme
(equation 2) use the directional sampling intervals of Δx ¼ 200 m

and Δz ¼ 100 m. Because of the smaller damping constant s, the
wavefield is less attenuated in comparison with the case shown in
Figure 4. Accordingly, the maximum relative error for the result
computed with the five-point scheme (equation 5) becomes
170%, but it is still very large. For the average-derivative optimal
nine-point scheme (equation 2), the relative error at far offsets is
reduced to 15%.

The errors for the five-point scheme (equation 5) can be reduced
by using smaller Δx and Δz, but this carries a much higher storage
requirement and much longer computational time. Figure 6a shows
the Laplace-domain seismograms computed with the analytical for-
mula (equation 11), the classic five-point scheme (equation 5) with
Δx ¼ 200 m and Δz ¼ 100 m, and the classic five-point scheme
(equation 5) with Δx ¼ 62 m and Δz ¼ 31 m. Figure 6b shows
the corresponding relative errors. One can see that the relative error
at far offsets is reduced from 170% to 40% by using the smaller
spacings. The Laplace damping constant s is taken to be 5π. From
Figures 5 and 6, one can see that the result computed the classic
five-point scheme (equation 5) with Δx ¼ 62 m and Δz ¼ 31 m ap-
proaches the accuracy of the average-derivative optimal nine-point
scheme (equation 5) with Δx ¼ 200 m and Δz ¼ 100 m. However,
for the classic five-point scheme (equation 2) with Δx ¼ 62 m and
Δz ¼ 31 m, its storage requirement is approximately 32 times higher
and its computational time is approximately seven times longer in
comparison with that of the average-derivative optimal nine-point
scheme (equation 2) with Δx ¼ 200 m and Δz ¼ 100 m.

∇ ∇∇∇ ∇∇∇∇∇∇∇ ∇∇∇∇∇

* 
Source 

Receivers 

10 km

10 km

Figure 3. Schematic of the homogeneous model. A Ricker wavelet
is placed at the center of the model as a source, and a receiver array
is placed at a depth of 2.5 km.

Figure 2. Normalized numerical attenuation
propagation velocity (Vnum∕v) surfaces of the
five-point scheme (equation 5) and the average-
derivative optimal nine-point scheme (equation 2)
for different propagation angles. The surface is a
function of 1

G and Δx
Δz.
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CONCLUSIONS

By defining a pseudowavelength as 2π times the skin depth, I
have developed a Laplace-domain method of numerical dispersion
analysis. The resulting numerical attenuation propagation velocity
depends on the pseudowavelength, which is parallel to its
frequency-domain counterpart. Therefore, one can make use of the
frequency-domain optimization technique. I have applied this Lap-
lace-domain method of dispersion analysis to an average-derivative
optimal nine-point scheme in Laplace domain. The resulting opti-
mization coefficients are different from their frequency-domain
counterparts. Compared to the classic five-point scheme, this
Laplace-domain average-derivative optimal nine-point scheme re-
duces the number of grid points per shortest pseudowavelength
from 13 to four for equal and unequal directional sampling inter-
vals. Comparisons with the analytical solution for a homogeneous
model demonstrate that the average-derivative optimal nine-
point scheme is more accurate than the classic five-point scheme
for the same sampling intervals, particularly at far offsets. The
classic five-point scheme can approach the accuracy of the
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Figure 4. Laplace-domain seismograms computed with the analyti-
cal formula (equation 11), the classic five-point scheme (equa-
tion 5), and the average-derivative optimal nine-point scheme
(equation 2) (a), the corresponding relative errors (b), and an en-
larged part of (b) in (c). The Laplace damping constant s is
10π, Δx ¼ 100 m, and Δz ¼ 50 m.
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Figure 5. Laplace-domain seismograms computed with the analyti-
cal formula (equation 11), the classic five-point scheme (equa-
tion 5), and the average-derivative optimal nine-point scheme
(equation 2) (a) and the corresponding relative errors (b). The Lap-
lace damping constant s is 5π, Δx ¼ 200 m, and Δz ¼ 100 m.
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average-derivative optimal nine-point scheme by using smaller
spacings, but the corresponding storage requirement and computa-
tional time significantly increase.
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Figure 6. Laplace-domain seismograms computed with the analyti-
cal formula (equation 11), the classic five-point scheme (equation 5)
with Δx ¼ 200 m and Δz ¼ 100 m, and the classic five-point
scheme (equation 5) with Δx ¼ 62 m and Δz ¼ 31 m, (a) and
the corresponding relative errors (b). The Laplace damping constant
s is 5π.
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