The Academicians
Associate Professor
Special-Term Associate Professor
Professor of Engineering
Associate Senior Title
Location: home > Staff
Details of the Faculty or Staff
Wang Jiangang
  Associate Professor
Highest Education  
Subject Categories  
Zip Code  
  No.19 Beitucheng West Road, Chaoyang District, Beijing, 100029, China

Education and Appointments:
  • 2002.09-2006.06Department of Earth Sciences, Nanjing University, B.S. 
  • 2006.09-2011.06School of Earth Sciences and Engineering, Nanjing University, Ph.D. 
  • 2011.07-2012.04School of Resource and Environment, Southwest Petroleum University, Lecturer 
  • 2012.05-2014.12Institute of Geology and Geophysics, Chinese Academy of Sciences, Postdoctor 
  • 2015.01-PresentInstitute of Geology and Geophysics, Chinese Academy of Sciences, Associate Professor

Research Interests:
  1. Sedimentary Geology and Basin dynamics 
  2. Himalayan-Tibetan Geology
Public Services:


Supported Projects:
  1. National Scientific Foundation of China (41202082)  
  2. The MOST 973 project  (2012CB8220011)

Selected Publication:


  1. Wang, J.G., Hu, X.M., Garzanti, E., BouDagher-Fadel, M.K., Liu, Z.C., Li, J. and Wu, F.-Y., 2020. From extension to tectonic inversion: mid-Cretaceous onset of Andean-type orogeny and topographic growth on the Lhasa block, southern Tibet. GSA Bulletin,
  2. Li, C., Hu, X.-M., Wang, J.G., Vermeesch, P., Garzanti, E., 2020. Sandstone provenance analysis in Longyan supports the existence of a Late Paleozoic continental arc in South China. Tectonophysics, 780,


  1. Meng, Z.-Y., Wang, J.-G., Ji, W.-Q., Zhang, H., Wu, F.-Y., Garzanti, E., 2019. The Langjiexue Group is an in situ sedimentary sequence rather than an exotic block: Constraints from coeval Upper Triassic strata of the Tethys Himalaya (Qulonggongba Formation). Science China Earth Sciences, 62(5): 783-797.
  2. Liu, Z.-C., Wu, F.-Y., Liu, X.-C, Wang, J.-G., Ji, W.-Q., Yang, L., 2019. Mineralogical evidence for fractionation processes in the Himalayan leucogranites of the Ramba Dome, southern Tibet. Lithos, 340-341: 71-86.


  1. Liu, Z.-C., Ding, L., Zhang, L.-Y., Wang, C., Qiu, Z.-L., Wang, J.-G., Shen, X.-L. and Deng, X.-Q., 2018. Sequence and petrogenesis of the Jurassic volcanic rocks (Yeba Formation) in the Gangdese arc, southern Tibet: Implications for the Neo-Tethyan subduction. Lithos, 312-313: 72-88.
  2. Fu, Hanpu, Hu, Xiumian, Crouch, E.M., An, W., Wang, J.G., Garzanti, E., 2018. Upper Cretaceous trench deposits of the Neo-Tethyan subduction zone: Jiachala Formation from Yarlung Zangbo suture zone in Tibet, China. Science China-Earth Sciences, 61(9): 1204-1220.
  3. Garzanti, E., Limonta, M., Vezzoli, G., An, W., Wang, J.G., and Hu, X.M., 2018, Petrology and multimineral fi ngerprinting of modern sand generated from a dissected magmatic arc (Lhasa River, Tibet), in Ingersoll, R.V., Lawton, T.F., and Graham, S.A., eds., Tectonics, Sedimentary Basins, and Provenance: A Celebration of William R. Dickinson’s Career: Geological Society of America Special Paper 540, p. 197–221,


  1. Wang, J.-G., Hu, X., Garzanti, E., An, W. and Liu, X.-C., 2017. The birth of the Xigaze forearc basin in southern Tibet. Earth and Planetary Science Letters, 465: 38-47.
  2. Wang, J.-G., Hu, X., Garzanti, E., Ji, W.-Q., Liu, Z.-C., Liu, X.-C. and Wu, F.-Y., 2017. Early cretaceous topographic growth of the Lhasaplano, Tibetan plateau: Constraints from the Damxung conglomerate. Journal of Geophysical Research: Solid Earth, 122, doi:10.1002/2017JB014278.
  3. BouDagher-Fadel, M.K., Hu, X.M., Prince, G.D., Sun, G.Y., Wang, J.-G. and An, W., 2017. Foraminiferal biostratigraphy and palaeoenvironmental analysis of the Mid-Cretaceous limestones in the southern Tibetan Plateau. Journal of Foraminiferal Research, 42(2): 188-207.
  4. Hu, X.M., Wang, J.G., An, W., Garzanti, E. and Li, J., 2017. Constraining the timing of the India-Asia continental collision by the sedimentary record. Science China Earth Sciences, 60(4): 603-625.
  5. Liu, Z.-C., Wu, F.-Y., Qiu, Z.-L., Wang, J.-G., Liu, X.-C., Ji, W.-Q. and Liu, C.-Z., 2017. Leucogranite geochronological constraints on the termination of the South Tibetan Detachment in eastern Himalaya. Tectonophysics, 721: 106-122.
  6. Malusà, M.G., Wang, J.G., Garzanti, E., Liu, Z.-C., Villa, I.M. and Wittmann, H., 2017. Trace-element and Nd-isotope systematics in detrital apatite of the Po river catchment: Implications for provenance discrimination and the lag-time approach to detrital thermochronology. Lithos, 290-291: 48-59.
  7. Xu, Y., Liu, C.-Z., Chen, Y., Guo, S., Wang, J.-G. and Sein, K., 2017. Petrogenesis and tectonic implications of gabbro and plagiogranite intrusions in mantle peridotites of the Myitkyina ophiolite, Myanmar. Lithos, 284-285: 180-193.


  1. Wang, J.-G., Wu, F.-Y., Garzanti, E., Hu, X., Ji, W.-Q., Liu, Z.-C. and Liu, X.-C., 2016. Upper Triassic turbidites of the northern Tethyan Himalaya (Langjiexue Group): The terminal of a sediment-routing system sourced in the Gondwanide Orogen. Gondwana Research, 34: 84-98.
  2. Garzanti, E., Wang, J.-G., Vezzoli, G. and Limonta, M., 2016. Tracing provenance and sediment fluxes in the Irrawaddy River basin (Myanmar). Chemical Geology, 440: 73-90.
  3. Guo, S., Chen, Y., Liu, C.-Z., Wang, J.-G., Su, B., Gao, Y.-J., Wu, F.-Y., Sein, K., Yang, Y.-H. and Mao, Q., 2016. Scheelite and coexisting F-rich zoned garnet, vesuvianite, fluorite, and apatite in calc-silicate rocks from the Mogok metamorphic belt, Myanmar: Implications for metasomatism in marble and the role of halogens in W mobilization and mineralization. Journal of Asian Earth Sciences, 117: 82-106.
  4. Hu, X.M., Garzanti, E., Wang, J.G., Huang, W.T., An, W. and Webb, A., 2016. The timing of India-Asia collision onset – Facts, theories, controversies. Earth-Science Reviews, 160: 264-299.
  5. Hu, X.M., Wang, J.G., BouDagher-Fadel, M., Garzanti, E. and An, W., 2016. New insights into the timing of the India–Asia collision from the Paleogene Quxia and Jialazi formations of the Xigaze forearc basin, South Tibet. Gondwana Research, 32: 76-92.
  6. Ji, W.-Q., Wu, F.-Y., Chung, S.-L., Wang, X.-C., Liu, C.-Z., Li, Q.-L., Liu, Z.-C., Liu, X.-C. and Wang, J.-G., 2016. Eocene Neo-Tethyan slab breakoff constrained by 45 Ma oceanic island basalt–type magmatism in southern Tibet. Geology, 44(4): 283-286.
  7. Liu, C.-Z., Chung, S.-L., Wu, F.-Y., Zhang, C., Xu, Y., Wang, J.-G., Chen, Y. and Guo, S., 2016. Tethyan suturing in Southeast Asia: Zircon U-Pb and Hf-O isotopic constraints from Myanmar ophiolites. Geology, 44(4): 311-314.
  8. Liu, C.-Z., Zhang, C., Xu, Y., Wang, J.-G., Chen, Y., Guo, S., Wu, F.-Y. and Sein, K., 2016. Petrology and geochemistry of mantle peridotites from the Kalaymyo and Myitkyina ophiolites (Myanmar): Implications for tectonic settings. Lithos, 264: 495-508.
  9. Liu, X.-C., Wu, F.-Y., Yu, L.-J., Liu, Z.-C., Ji, W.-Q. and Wang, J.-G., 2016. Emplacement age of leucogranite in the Kampa Dome, southern Tibet. Tectonophysics, 667: 163-175.
  10. Liu, Z.-C., Wu, F.-Y., Ding, L., Liu, X.-C., Wang, J.-G. and Ji, W.-Q., 2016. Highly fractionated Late Eocene (~ 35 Ma) leucogranite in the Xiaru Dome, Tethyan Himalaya, South Tibet. Lithos, 240-243: 337-354.
  11. Sun, J.M., Xiao, W.J., Windley, B.F., Ji, W., Fu, B.H., Wang, J.G. and Jin, C.S., 2016. Provenance change of sediment input in the northeastern foreland of Pamir related to collision of the Indian Plate with the Kohistan-Ladakh arc at around 47Ma. Tectonics, 35: 315-338.
  12. Zhang, L.-L., Liu, C.-Z., Wu, F.-Y., Zhang, C., Ji, W.-Q. and Wang, J.-G., 2016. Sr–Nd–Hf isotopes of the intrusive rocks in the Cretaceous Xigaze ophiolite, southern Tibet: Constraints on its formation setting. Lithos, 258-259: 133-148.


  1. Wang, J.-G., Hu, X,-M., BouDagher-Fadel, M., Wu, F.-Y., Sun, G.-Y., 2015. Early Eocene sedimentary recycling in the Kailas area, southwestern Tibet: Implications for the initial India–Asia collision. Sedimentary Geology, 315: 1-13.
  2. Li, J., Hu, X.M., Garzanti, E., An, W. and Wang, J.G., 2015. Paleogene carbonate microfacies and sandstone provenance (Gamba area, South Tibet): Stratigraphic response to initial India–Asia continental collision. Journal of Asian Earth Sciences, 104: 39-54.

  3. Sun, G.Y., Hu, X.M., Sinclair, H.D., BouDagher-Fadel, M.K. and Wang, J.G., 2015. Late Cretaceous evolution of the Coqen Basin (Lhasa terrane) and implications for early topographic growth on the Tibetan Plateau. Geological Society of America Bulletin, 127(7-8): 1001-1020.

  4. Sun, G.-Y., Hu, X.-M., Zhu, D.-C., Hong, W.-T., Wang, J.-G. and Wang, Q., 2015. Thickened juvenile lower crust-derived ~90Ma adakitic rocks in the central Lhasa terrane, Tibet. Lithos, 224-225: 225-239.


  1. Wang, J.-G., Wu, F.-Y., Tan, X.-C. and Liu, C.-Z., 2014. Magmatic evolution of the Western Myanmar Arc documented by U–Pb and Hf isotopes in detrital zircon. Tectonophysics, 612–613: 97-105. 
  2. Hu, X.M., An, W., Wang, J.G., Garzanti, E. and Guo, R.H., 2014. Himalayan detrital chromian spinels and timing of Indus-Yarlung ophiolite erosion. Tectonophysics, 621: 60–68. 
  3. Wu, F.-Y., Ji, W.-Q., Wang, J.-G., Liu, C.-Z., Chung, S.-L. and Clift, P.D., 2014. Zircon U-Pb and Hf isotopic constraints on the onset time of India-Asia collision. American Journal of Science, 314(2): 548-579. 
  4. Zhang, L.-L., Liu, C.-Z., Wu, F.-Y., Ji, W.-Q. and Wang, J.-G., 2014. Zedong terrane revisited: An intra-oceanic arc within Neo-Tethys or a part of the Asian active continental margin? Journal of Asian Earth Sciences, 80: 34-55. 
  5. An, W., Hu, X.-M., Garzanti, E., BouDagher-Fadel, M.K., Wang, J.-G. and Sun, G.-Y., 2014. Xigaze forearc basin revisited (South Tibet): Provenance changes and origin of the Xigaze Ophiolite. Geological Society of America, Bulletin, 126(11-12): 1595–1613.
  6. Liu, Z.-C., Wu, F.-Y., Ji, W.-Q., Wang, J.-G. and Liu, C.-Z., 2014. Petrogenesis of the Ramba leucogranite in the Tethyan Himalaya and constraints on the channel flow model. Lithos, 208-209: 118-136.


  1. Wang, J.-G., Hu, X.-M., Garzanti, E. and Wu, F.-Y., 2013. Upper Oligocene–Lower Miocene Gangrinboche Conglomerate in the Xigaze Area, Southern Tibet: Implications for Himalayan Uplift and Paleo-Yarlung-Zangbo Initiation. The Journal of Geology, 121(4): 425-444. 
  2. Li, Y.L., He, J., Wang, C.S., Santosh, M., Dai, J.G., Zhang, Y.X., Wei, Y.S. and Wang, J.G., 2013. Late Cretaceous K-rich magmatism in central Tibet: Evidence for early elevation of the Tibetan plateau? Lithos, 160: 1-13. 


  1. Hu, X.M., Huang, Z.C., Wang, J.G., Yu, J.H., Xu, K.D., Jansa, L. and Hu, W.X., 2012. Geology of the Fuding inlier in southeastern China: Implication for late Paleozoic Cathaysian paleogeography. Gondwana Research, 22(2): 507-518. 
  2. Hu, X.M., Sinclair, H.D., Wang, J.G., Jiang, H.H. and Wu, F.Y., 2012. Late CretaceousPalaeogene stratigraphic and basin evolution in the Zhepure Mountain of southern Tibet: implications for the timing of IndiaAsia initial collision. Basin Research, 24(5): 520-543. 
  3. Li, X., Cai, Y.F., Hu, X.M., Huang, Z.C. and Wang, J.G., 2012. Mineralogical characteristics and geological significance of Albian (Early Cretaceous) glauconite in Zanda, southwestern Tibet, China. Clay Minerals, 47(1): 45-58. 


  1. Wang, J.G., Hu, X.M., Jansa, L. and Huang, Z.C., 2011. Provenance of the Upper Cretaceous–Eocene deep-water sandstones in Sangdanlin, southern Tibet: Constraints on the timing of initial India-Asia collision. The Journal of Geology, 119(3): 293-309. 


  1. Wang, J.-G., Hu, X.-M., Wu, F.-Y. and Jansa, L., 2010. Provenance of the Liuqu Conglomerate in southern Tibet: a Paleogene erosional record of the Himalayan–Tibetan orogen. Sedimentary Geology, 231(3): 74-84. 
  2. Hu, X.M., Jansa, L., Chen, L., Griffin, W.L., O'Reilly, S.Y. and Wang, J.G., 2010. Provenance of Lower Cretaceous W?long volcaniclastics in the Tibetan Tethyan Himalaya: Implications for the final breakup of eastern Gondwana. Sedimentary Geology, 223(3): 193-205.
No. 19, Beitucheng Xilu, Chaoyang District, 100029, Beijing, PR China
Tel:010-82998001 Fax:010-62010846